Chứng tỏ rằng tam giác ABC với A(1;1), B(2;3), C(5;-1) là một tam giác vuông, từ đó tính diện tích tam giác.
chứng tỏ rằng tam giác ABC với A(4,6), B(1,4), C(7,3/2) là 1 tam giác vuông, từ đó tính diện tích tam giác
chứng tỏ rằng tam giác ABC với A(4,6), B(1,4), C(7,3/2) là 1 tam giác vuông, từ đó tính diện tích tam giác
\(\left\{{}\begin{matrix}\overrightarrow{AB}=\left(-3;-2\right)\\\overrightarrow{AC}=\left(3;-\dfrac{9}{2}\right)\end{matrix}\right.\)
\(\Rightarrow\overrightarrow{AB}.\overrightarrow{AC}=-3.3+\left(-2\right).\left(-\dfrac{9}{2}\right)=0\)
\(\Rightarrow AB\perp AC\) hay tam giác ABC vuông tại A
\(AB=\sqrt{\left(-3\right)^2+\left(-2\right)^2}=\sqrt{13}\) ; \(AC=\sqrt{3^2+\left(-\dfrac{9}{2}\right)^2}=\dfrac{3\sqrt{13}}{2}\)
\(S_{ABC}=\dfrac{1}{2}AB.AC=\dfrac{39}{4}\)
Cho tam giác ABC với BD là phân giác. Qua A kẻ đường thăng a // BD. Chứng tỏ rằng đường thẳng a cắt đường thẳng BC.
Giả sử a//BC. Theo đề ta có:
\(\widehat{A_1}=\widehat{C_1}\) (hai góc so le trong) (1)
\(\widehat{A_1}=\dfrac{1}{2}\widehat{ABC}+\widehat{BAC}\) (vì BD là tia phân giác của \(\widehat{ABC}\)) (2)
\(\widehat{C_1}=\widehat{ABC}+\widehat{BAC}\) (vì \(\widehat{C_1}\) là góc ngoài của \(\widehat{C}\) ) (3)
Từ (1); (2) và (3) suy ra \(\dfrac{1}{2}\widehat{ABC}=\widehat{ABC}\), hay \(\dfrac{1}{2}=1\) (vô lí)
Suy ra a không song song với BC, hay a cắt đường thẳng BC
cho tam giác abc gọi b là điểm chính giữa cạnh ab q là điểm chính giữa cạch ac bq cắt cp tại m biết diện tích tam giác abc là 120cm2
a chứng tỏ rằng dt tam giác pbm bằng cqm
c chứng tỏ rằng dt tam giác amb bằng amc
Cho tam giác ABC,M là trung điểm của BC.Nối A với M.Hãy chứng tỏ rằng diện tích 2 tam giác ABM và ACM bằng nhau.
Kẻ AH vuông góc với BC
Ta có: \(S_{ABM}=\frac{BM\times AH}{2}\) ; \(S_{ACM}=\frac{CM\times AH}{2}\)
Vì CM=BM nên \(\frac{CM\times AH}{2}=\frac{BM\times AH}{2}\)
=> Diện tích 2 tam giác ABM và ACM = nhau
Cho hình tam giác ABC ;M là trung điểm của BC.Nối A với M.Hãy chứng tỏ rằng diện tích hai hình tam giác ABM và ACM bằng nhau.
Vì BM = MC mà 2 hình đều có chung chiều cao AM
=> Diện tích 2 hình bằng nhau
cho tam giác abc gọi m là điểm chính giữa cạnh ab n là thuộc cạnh ac sao cho an=1/2 nc bn cắt cm tại k biết diện tích tam giác abc là 260cm2
a tính Stam giác amn
b chứng tỏ rằng Stam giác ack gấp 2 lần bck chứng tỏ rằng S tam giác gấp 2 abk
d tính S abk
một lớp mẫu giáo ngày đầu xuân cô giáo đem 265 cái kẹo chia cho các cháu được 7 hoặc 8 cái biết rằng số cháu trai gấp đôi số cháu gái .Hỏico bao nhiêu chau được chia7 cái kẹo bao nhiêu bạn được 8 cái kẹo
Cho hình tam giác ABC, M là trung điểm của BC. Nối A với M. Hãy chứng tỏ rằng diện tích hai hình tam giác ABM và ACM bằng nhau
Ta kẻ AHAH vuông góc với BCBC
Ta có : SΔABM=BM×AH2SΔABM=BM×AH2
SΔACM=CM×AH2SΔACM=CM×AH2
Do CM=BMCM=BM
⇒ΔABM=ΔACM⇒ΔABM=ΔACM → đpcm .