Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyen thi ngoc anh
Xem chi tiết
vũ thị duyên
Xem chi tiết

Gọi a là cạnh đối diện góc A, tương tự đối với b và c. Gọi chiều cao tương ứng với cạnh a là ha, tương tự đối với hb và hc. Ta có ha.a=hb.b=hc.c=2S, từ ha.a=hb.b => a/b=hb/ha=65/60=13/12 => đặt a=13k (k khác 0), b=12k (k khác 0). Từ hb.b=hc.c => b/c=hc/hb=156/65=12/5 => đặt c=5k (k khác 0), nhận thấy a;b và c thỏa mãn Pytago => theo định lý Pytago đảo thì tam giác ABC vuông tại A. Giả sử AH,BK,CL là đường cao từ các đỉnh. Theo hệ thức lượng trong tam giác vuông ta có AC^2=CH.BC <=> CH=(AC^2)/BC = 144k/13. Xét tam giác ACH có góc H=90 độ, nên áp dụng định lý Pytago ta có AH^2 + CH^2 = AC^2 => AC^2 - CH^2 = AH^2 <=> (12k)^2 - (144k/13)^2 = 60^2, sau đó ta tính được k=13 => AB=65mm; AC=156mm => diện tích ABC = (65 x 156 )/ 2 = 5070 mm^2

mình lớp 5 mong bạn thông cảm

lê phương thảo
Xem chi tiết
Nguyễn Bảo Ngân
24 tháng 2 2016 lúc 19:31

Muốn tính diện tích hình tam giác ta lấy các cạnh nhân lại với nhau

Vậy sẽ là bằng : 60 x 65 x 156 = 608400 (cm)

lê phương thảo
24 tháng 2 2016 lúc 19:20

bạn nào giúp mình với

Lê Hải Dương
Xem chi tiết
Nguyễn Tư
Xem chi tiết
duy
Xem chi tiết
Chanyeol L-boy Cuồng
Xem chi tiết
Đoàn Thị Linh Chi
8 tháng 5 2016 lúc 9:44

hình như dựa vào tính chất dãy tỉ số bằng nhau ak pn. mk cx chỉ nhớ z thui chứ hk chắc cko lém :)

Nịna Hatori
26 tháng 2 2017 lúc 7:57

Rảnh

Quoc Tran Anh Le
Xem chi tiết
Kiều Sơn Tùng
25 tháng 9 2023 lúc 16:40

Tham khảo:

a) Đặt \(a = BC,b = AC,c = AB.\)

Ta có: \(p = \frac{1}{2}(15 + 18 + 27) = 30\)

Áp dụng công thức heron, ta có:

\({S_{ABC}} = \sqrt {30(30 - 15)(30 - 18)(30 - 27)}  = 90\sqrt 2 \)

Và \(r = \frac{S}{p} = \frac{{90\sqrt 2 }}{{30}} = 3\sqrt 2 \)

b) Gọi, H, K lần lượt là chân đường cao hạ từ A và G xuống BC, M là trung điểm BC.

G là trọng tâm tam giác ABC nên \(GM = \frac{1}{3}AM\)

\(\begin{array}{l} \Rightarrow GK = \frac{1}{3}.AH\\ \Rightarrow {S_{GBC}} = \frac{1}{3}.\,{S_{ABC}} = \frac{1}{3}.90\sqrt 2  = 30\sqrt 2 .\end{array}\)

Nguyen An Mminh
Xem chi tiết