Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trà My
Xem chi tiết
Phạm Nguyễn Tất Đạt
27 tháng 4 2018 lúc 20:30

\(A=2x^2+2y^2+z^2+2xy-2xz-2yz-2x-4y\)

\(A=\left(x^2+y^2+z^2+2xy-2xz-2yz\right)+\left(x^2-2x+1\right)+\left(y^2-4y+4\right)-5\)

\(A=\left(z-y-x\right)^2+\left(x-1\right)^2+\left(y-2\right)^2-5\ge-5\)

\(\Rightarrow MINA=5\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\\z=3\end{matrix}\right.\)

Trần Quốc Lộc
28 tháng 4 2018 lúc 12:01

Ôn tập cuối năm phần số học

Tiến Hoàng Minh
Xem chi tiết
Lấp La Lấp Lánh
31 tháng 10 2021 lúc 23:21

\(G=2x^2+2y^2+z^2+2xy-2xz-2yz-2x-4y\)

\(=\left[x^2+2x\left(y-z\right)+\left(y-z\right)^2\right]+\left(x^2-2x+1\right)+\left(y^2-4y+4\right)-5\)

\(=\left(x+y-z\right)^2+\left(x-1\right)^2+\left(y-2\right)^2-5\ge-5\)

\(minG=-5\Leftrightarrow\) \(\left\{{}\begin{matrix}x+y-z=0\\x-1=0\\y-2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\\z=3\end{matrix}\right.\)

 

ffcs
Xem chi tiết
ffcs
Xem chi tiết
HP 7a2TT
Xem chi tiết
KietKiet
2 tháng 8 2021 lúc 13:56

Ta có:

D=2x2+3y2+4xy−8x−2y+18C=2x2+3y2+4xy−8x−2y+18

D=2(x2+2xy+y2)+y2−8x−2y+18C=2(x2+2xy+y2)+y2−8x−2y+18

D=2[(x+y)2−4(x+y)+4]+(y2+6y+9)+1C=2[(x+y)2−4(x+y)+4]+(y2+6y+9)+1

D=2(x+y−2)2+(y+3)2+1≥1C=2(x+y−2)2+(y+3)2+1≥1

Dấu "=" xảy ra ⇔x+y=2⇔x+y=2và y=−3y=−3

Hay x = 5 , y = -3

Đc chx bạn

KietKiet
2 tháng 8 2021 lúc 14:07

KietKiet
2 tháng 8 2021 lúc 14:18

Ngô Nam Khánh
Xem chi tiết
nghiemdamquockhanh
16 tháng 6 2018 lúc 8:15

yiouoiyy

Đàm Thị Minh Hương
16 tháng 6 2018 lúc 8:37

\(2x^2+2y^2+z^2+2xy+2xz+2yz+10x+6y+34=0\)

\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2zx\right)+\left(x^2+10x+25\right)+\left(y^2+6y+9\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)^2+\left(x+5\right)^2+\left(y+3\right)^2=0\)

Vì \(\hept{\begin{cases}\left(x+y+z\right)^2\ge0\\\left(x+5\right)^2\ge0\\\left(y+3\right)^2\ge0\end{cases}}\)\(\Rightarrow\left(x+y+z\right)^2+\left(x+5\right)^2+\left(y+3\right)^2\ge0\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x+y+z\right)^2=0\\\left(x+5\right)^2=0\\\left(y+3\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y+z=0\\x+5=0\\y+3=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x+y+z=0\\x=-5\\y=-3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-5\\y=-3\\z=8\end{cases}}}\)

Đàm Thị Minh Hương
16 tháng 6 2018 lúc 8:40

\(A=2x^2+4y^2+4xy+2x+4y+9=\left(x^2+4y^2+4xy+2x+4y+1\right)+x^2+8\)

   \(=\left(x+2y+1\right)^2+x^2+8\ge8\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+2y+1=0\\x=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=-\frac{1}{2}\end{cases}}}\)

Vậy \(Min\left(A\right)=8\Leftrightarrow\hept{\begin{cases}x=0\\y=-\frac{1}{2}\end{cases}}\)

Đỗ Thị Hải Yến
Xem chi tiết
shitbo
12 tháng 10 2019 lúc 14:39

\(2x^2+2y^2+z^2+2xy+2yz+2zx+2x+4y+5\)

\(=\left(x^2+y^2+z^2+2xy+2yz+2zx\right)+\left(x^2+2x+1\right)+\left(y^2+4y+4\right)\)

\(=\left(x+y+z\right)^2+\left(x+1\right)^2+\left(y+2\right)^2=0\)

Mà: \(\hept{\begin{cases}\left(x+y+z\right)^2\ge0\\\left(x+1\right)^2\ge0\\\left(y+2\right)^2\ge0\end{cases}}\Rightarrow\hept{\begin{cases}\left(x+y+z\right)^2=0\\\left(x+1\right)^2=0\\\left(y+2\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y+z=0\\x+1=0\\y+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y+z=0\\x=-1\\y=-2\end{cases}}\Leftrightarrow\hept{\begin{cases}z=3\\x=-1\\y=-2\end{cases}}\)

KHANH QUYNH MAI PHAM
Xem chi tiết
ST
12 tháng 8 2018 lúc 21:22

<=>(x2+y2+z2+2xy+2yz+2xz)+(x2+2x+1)+(y2+4y+4)=0

<=>(x+y+z)2+(x+1)2+(y+2)2=0

Mà \(\hept{\begin{cases}\left(x+y+z\right)^2\ge0\\\left(x+1\right)^2\ge0\\\left(y+2\right)^2\ge0\end{cases}\Rightarrow\left(x+y+z\right)^2+\left(x+1\right)^2+\left(y+2\right)^2\ge0}\)

=>\(\hept{\begin{cases}x+y+z=0\\x+1=0\\y+2=0\end{cases}\Rightarrow\hept{\begin{cases}z=3\\x=-1\\y=-2\end{cases}}}\)

Băng Thiên
Xem chi tiết
Phương An
19 tháng 7 2017 lúc 14:36

2x2 + 2y2 + z2 + 2xy + 2xz + 2yz + 2x + 4y + 5 = 0

<=> (x2 + y2 + z2 + 2xy + 2yz + 2xz) + (x2 + 2x + 1) + (y2 + 4y + 4) = 0

<=> (x + y + z)2 + (x + 1)2 + (y + 2)2 = 0

\(\Leftrightarrow\left\{{}\begin{matrix}x+y+z=0\\x+1=0\\y+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-2\\z=3\end{matrix}\right.\)