Tam giác abc vuông tại a . Góc abc bằng 60 độ . Kẻ tia ax song song vs bc . Trên ax lên d sao cho ad bằng dc . Cm abcd là hình thang cân
cho tam giác vuông tại A, ABC bằng 60 độ kẻ tia Ax song song với BC . Trên tia Ax lấy điểm D sao cho AD=DC gọi E là trung điểm BC
a) tính BCD ?
b) chứng minh ABCD là hình thang cân
cho tam giác ABC vuông tại A có góc ABC = 60° kẻ tia Ax song song với BC trên Ax lấy điểm D sao cho AD =DC
A) tính số đo góc BAD và góc ĐAC
B). Chứng minh tứ giác ABCD là hình thang cân
C) gọi E là trung điểm của BC chứng minh tứ giác ADEB là hình thoi
Answer:
A) Ta có: AD // BC
\(\Rightarrow\widehat{ABC}+\widehat{BAD}=180^o\) (Hai góc trong cùng phía bù nhau)
\(\Rightarrow60^o+\widehat{BAD}=180^o\)
\(\Rightarrow\widehat{BAD}=120^o\)
\(\Rightarrow\widehat{BAC}+\widehat{DAC}=120^o\)
\(\Rightarrow\widehat{DAC}=30^o\)
B) Xét tam giác DAC có: DA = DC => Tam giác DAC cân tại D
\(\Rightarrow\widehat{DCA}=\widehat{DAC}=30^o\)
\(\Rightarrow\widehat{DCB}=\widehat{DCA}+\widehat{ACB}=60^o=\widehat{ABC}\)
Tứ giác ABCD có:
AD // BC (giả thiết)
Hai góc kề đáy CD bằng nhau
=> ABCD là hình thang cân
C) Theo phần b): ABCD là hình thang cân
=> AB = CD mà AD = CD (giả thiết)
=> AB = AD
Tam giác ABC vuông tại A có AB là cạnh đối diện \(\widehat{BCA}=30^o\)
=> AB = BC : 2 = BE = EC
Mà ta có: AB = AD => AD = BE
Tứ giác ADEB có:
AD // BE
AD = BE
=> Nên là hình bình hành
Ta có: AD = AB => ADEB là hình thoi
cho tam giác ABC vuông tại A có góc ABC = 60° kẻ tia Ax song song với BC trên Ax lấy điểm D sao cho AD =DC
A) tính số đo góc BAD và góc ĐAC
B). Chứng minh tứ giác ABCD là hình thang cân
C) gọi E là trung điểm của BC chứng minh tứ giác ADEB là hình thoi
Cho tam giác ABC vuông tại A có góc ABC + 60 độ, kẻ tia Ax song song với BC. Trên Ax lấy điểm D sao cho AD = DC.
a) Tính các góc BAD và DAC
b) Chứng minh tứ giác ABCD là hình thang cân.
c) Gọi E là trung điểm của BC. Chứng minh tứ giác ADEB là hình thoi.
d) Cho AC = 8cm, AB = 5cm. Tính diện tích hình thôi ABED.
Giúp em bài này với huhuu
Bạn xem lại xem có sai đề không nhé vì ABCD không thể nào là hình thang cân được
Cho tam giác ABC vuông tại A có \(\widehat{ABC}\)=60°. Kẻ tia Ax song song với BC. Trên tia Ax lấy điểm D sao cho AD=DC
a) Chứng minh tứ giác ABCD là hình thang cân
b) Gọi E là trung điểm của BC. Chứng minh tứ giác ADEB là hình thoi
c) Cho AC=8cm, AB=5cm. Tính diện tích hình thoi ABED
Bài 1 : Cho tam giác nhọn ABC , gọi H là trực tâm tam giác , M là trung điểm BC . Gọi D là điểm đối xứng của H qua M .
a ) Chứng minhcác tam giác ABD và ACD vuông
b ) Gọi I là trung điểm AD . Chứng minh IA = IB =IC = ID
Bài 2 : Cho tam giác ABC vuông tại A có góc B bằng 60 độ , kẻ Ax song song BC . Trên tia Ax lấy điểm D sao cho : AD =DC
a ) Tính các góc BAD và góc DAC
b ) Chứng minh tứ giác ABCD là hình thang cân
c ) Gọi E là trung điểm BC . Chứng minh ADEB là hình thoi
Bài 3 : Cho hình vuông ABCD , E là trung điểm trên cạnh DC , F là điểm trên tia đối tia BC sao cho BF = DE .
a) Cminh : tam giác AEF vuông cân
b ) Gọi I là trung điểm EF . Chứng minh I thuộc BD
c ) Lấy K đối xứng A qua I . Chứng minh AEFK là hình vuông ( Hướng dẫn : Từ E kẻ EP // BC , P thuộc BD
Bài 1
a/Xét tứ giác BHCD có M đồng thời là trung điểm của cả HD và BC
Do đó BHCD là hình bình hành \(\Rightarrow BH//CD,CH//BD\)
Mặt khác vì ta có H là trực tâm của tam giác ABC nên \(BH\perp AC,CH\perp AB\)
Suy ra \(BD\perp AB,CD\perp AC\Rightarrow\Delta ABD,\Delta ACD\)là tam giác vuông
b/Xét \(\Delta ABD,\Delta ACD:\widehat{ABD}=\widehat{ACD}=90^0\);I là trung điểm của cạnh huyền chung AD
Suy ra \(IA=IB=IC=ID\)
Bài 2a/Vì AD=CD(gt) nên D nằm trên trung trực của đoạn AC suy ra \(\widehat{DAC}=\widehat{ECA}=90^0-60^0=30^0\)
Suy ra \(\widehat{BAD}=90^0+\widehat{DAC}=120^0\)
b/Trước hết ta thấy ABCD đã là hình thang,nên ta đi chứng minh \(\widehat{BCD}=\widehat{ABC}=60^0\)
Ta có \(\widehat{BCD}=\widehat{DCA}+\widehat{ACB}=\widehat{DAC}+30^0=30^0+30^0=60^0\)
Vậy ABCD là hình thang cân
c/Ta có \(\Delta BCE:AE=BE,\widehat{ABE}=60^0\Rightarrow AE=BE=AB\)
\(\widehat{ADE}=\frac{1}{2}.\widehat{ADC}=60^0;\widehat{BAD}=120^0=\widehat{BED}\)
Suy ra ABED là hình bình hành
Mà ta còn có AB=EB
Vậy ABED là hình thoi
Bài 3a/Xét \(\Delta ADE\)và \(\Delta ABF\)có \(AD=AB;DE=BF;\widehat{ADE}=\widehat{ABF}=90^0\)
\(\Rightarrow\Delta ADE=\Delta ABF\left(c.g.c\right)\Rightarrow AE=AF,\widehat{DAE}=\widehat{BAF}\Rightarrow DPCM\)
b/Dùng định lý Menelaus cho tam giác ECF:\(\overline{I;B;D}\Leftrightarrow\frac{DC}{DE}.\frac{BF}{BC}.\frac{IE}{IF}=1\Leftrightarrow\frac{DC}{DE}.\frac{BF}{BC}=1\left(I\right)\)
Ta thấy rõ (I) đúng do BC=DC;BF=DE
Vậy I thuộc BD
c/(mình thấy bình thường mà có cần kẻ gì)
Vì K và A đối xứng qua I mà I là trung điểm EF nên được AEFK là hình bình hành
Mà \(\widehat{EAF}=90^0;AE=AF\left(cmt\right)\)
Vậy AEFK là hình vuông
Bài 3
Cho tam giác ABC vuông tại A có góc BAC = 60 độ, kẻ tai Ax song song với BC. Trên Ax lấy điểm D sao cho AD = DC.
a) Tính góc BAD và DAC
b) Cm tứ giác ABCD là hình thang cân
c) Gọi E là trung điểm của BC. Cm tứ giác ADEB là hình thoi
d) Cho Ac = 8cm, AB = 5cm. Tính diện tích hình thoi ABED
Đề của mình cũng là góc BAC=60 độ
4
Cho góc xay = 60 độ , tia p/g az . lấy điểm b trên tia az . qua b vẽ đường thẳng song với ay cắt ax tại c , đường thẳng song với ax cắt ay tại d
A, tam giác acb là tam giác cân
B, cm ac=ad, bc=bd
C, tam giác acd là tam giác gì . vì sao
D, kẻ bh vuông góc với ã , bk vuông góc với ay . cm bh=bk
E, tính số đo góc hbk4
Cho góc xay = 60 độ , tia p/g az . lấy điểm b trên tia az . qua b vẽ đường thẳng song với ay cắt ax tại c , đường thẳng song với ax cắt ay tại d
A, tam giác acb là tam giác cân
B, cm ac=ad, bc=bd
C, tam giác acd là tam giác gì . vì sao
D, kẻ bh vuông góc với ã , bk vuông góc với ay . cm bh=bk
E, tính số đo góc hbk4
Cho góc xay = 60 độ , tia p/g az . lấy điểm b trên tia az . qua b vẽ đường thẳng song với ay cắt ax tại c , đường thẳng song với ax cắt ay tại d
A, tam giác acb là tam giác cân
B, cm ac=ad, bc=bd
C, tam giác acd là tam giác gì . vì sao
D, kẻ bh vuông góc với ã , bk vuông góc với ay . cm bh=bk
E, tính số đo góc hbk
4
Cho góc xay = 60 độ , tia p/g az . lấy điểm b trên tia az . qua b vẽ đường thẳng song với ay cắt ax tại c , đường thẳng song với ax cắt ay tại d
A, tam giác acb là tam giác cân
B, cm ac=ad, bc=bd
C, tam giác acd là tam giác gì . vì sao
D, kẻ bh vuông góc với ã , bk vuông góc với ay . cm bh=bk
E, tính số đo góc hbk
4
Cho góc xay = 60 độ , tia p/g az . lấy điểm b trên tia az . qua b vẽ đường thẳng song với ay cắt ax tại c , đường thẳng song với ax cắt ay tại d
A, tam giác acb là tam giác cân
B, cm ac=ad, bc=bd
C, tam giác acd là tam giác gì . vì sao
D, kẻ bh vuông góc với ã , bk vuông góc với ay . cm bh=bk
E, tính số đo góc hbk
4
Cho góc xay = 60 độ , tia p/g az . lấy điểm b trên tia az . qua b vẽ đường thẳng song với ay cắt ax tại c , đường thẳng song với ax cắt ay tại d
A, tam giác acb là tam giác cân
B, cm ac=ad, bc=bd
C, tam giác acd là tam giác gì . vì sao
D, kẻ bh vuông góc với ã , bk vuông góc với ay . cm bh=bk
E, tính số đo góc hbk
4
Cho góc xay = 60 độ , tia p/g az . lấy điểm b trên tia az . qua b vẽ đường thẳng song với ay cắt ax tại c , đường thẳng song với ax cắt ay tại d
A, tam giác acb là tam giác cân
B, cm ac=ad, bc=bd
C, tam giác acd là tam giác gì . vì sao
D, kẻ bh vuông góc với ã , bk vuông góc với ay . cm bh=bk
E, tính số đo góc hbk
4
Cho góc xay = 60 độ , tia p/g az . lấy điểm b trên tia az . qua b vẽ đường thẳng song với ay cắt ax tại c , đường thẳng song với ax cắt ay tại d
A, tam giác acb là tam giác cân
B, cm ac=ad, bc=bd
C, tam giác acd là tam giác gì . vì sao
D, kẻ bh vuông góc với ã , bk vuông góc với ay . cm bh=bk
E, tính số đo góc hbk
4
Cho góc xay = 60 độ , tia p/g az . lấy điểm b trên tia az . qua b vẽ đường thẳng song với ay cắt ax tại c , đường thẳng song với ax cắt ay tại d
A, tam giác acb là tam giác cân
B, cm ac=ad, bc=bd
C, tam giác acd là tam giác gì . vì sao
D, kẻ bh vuông góc với ã , bk vuông góc với ay . cm bh=bk
E, tính số đo góc hbk
4
Cho góc xay = 60 độ , tia p/g az . lấy điểm b trên tia az . qua b vẽ đường thẳng song với ay cắt ax tại c , đường thẳng song với ax cắt ay tại d
A, tam giác acb là tam giác cân
B, cm ac=ad, bc=bd
C, tam giác acd là tam giác gì . vì sao
D, kẻ bh vuông góc với ã , bk vuông góc với ay . cm bh=bk
E, tính số đo góc hbk
Bài 2. Cho tam giác ABC vuông tại A có , kẻ tia Ax song song với BC. Trên Ax lấy điểm D sao cho AD = DC.
a) .
b) Chứng minh tứ giác ABCD là hình thang cân.
c) Gọi E là trung điểm của BC. Chứng minh tứ giác ADEB là hình thoi.
Bài 3. Cho tam giác ABC có hai trung tuyến BD và CE cắt nhau tại G. Gọi M, N lần lượt là trung điểm của BG và CG.
a) Chứng minh tứ giác MNDE là hình bình hành.
b) Tìm điều kiện của tam giác ABC để tứ giác MNDE là hình chữ nhật, là hình thoi.
c) Chứng minh DE + MN = BC.
Bài 4. Cho tam giác ABC vuông ở A, đường cao AH. Kẻ HD vuông góc AB và HE vuông góc AC (D trên AB, E trên AC). Gọi O là giao điểm của AH và DE.
a) Chứng minh AH = DE.
b) Gọi P và Q lần lượt là trung điểm của BH và CH. Chứng minh tứ giác DEQP là hình thang vuông.
c) Chứng minh O là trực tâm tam giác ABQ.
d) Chứng minh SABC = 2SDEQP.
Bài 5. Cho tam giác ABC vuông tại A đường cao AH. Gọi D là điểm đối xứng với H qua AC, E là điểm đối xứng với H qua AB. Chứng minh:
a) D đối xứng với E qua A.
b) Tam giác DHE vuông.
c) Tứ giác BDEC là hình thang vuông.
d) BC = CD + BE
e) Tính độ dài đoạn thẳng ED biết AB = 6cm; AC = 8cm.