Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Hoàng Linh Chi
Xem chi tiết
Akai Haruma
16 tháng 7 2023 lúc 17:08

Lời giải:
Đặt $a+1=6k, b+2007=6m$ với $k,m\in\mathbb{Z}$

$4^n+a+b=4^n+6k-1+6m-2007=(4^n-2008)+6k+6m$

Hiển nhiên $4^n-2008\vdots 2$ với mọi $n$ là tự nhiên khác 0

$4\equiv 1\pmod 3\Rightarrow 4^n\equiv 1\pmod 3$

$\Rightarrow 4^n-2008\equiv 1-2008\equiv -2007\equiv 0\pmod 3$

Vậy $4^n-2008$ chia hết cho cả 2 và 3 nên chia hết cho 6

$\Rightarrow 4^n+a+b=4^n-2008+6k+6m\vdots 6$ (đpcm)

Lê Thị Trà My
Xem chi tiết
shitbo
16 tháng 11 2020 lúc 21:08

e có 2 chia hết cho d; 2n+3 lẻ nên (2n+3,4n+8)=1

còn n+1-n=1 nên (n,n+1)=1

Khách vãng lai đã xóa
FM Vũ Cát Tường
Xem chi tiết
nguyen thu phuong
1 tháng 4 2018 lúc 13:21

Bài 1:

a) C = 4 + 42 + 43 + 44 + ... + 42015 + 42016

C = (4 + 42 + 43) + (44 + 45 + 46) + ... + (42014 + 42015 + 42016)

C = 4(1 + 4 + 42) + 44 ( 1 + 4 + 42) + ...+ 42014(1 + 4 + 42)

C = 4 . 21 + 44 . 21 + ... + 42014 . 21

C = 21(4 + 44 + ... + 42014\(⋮\)21

=> C \(⋮\)21

C = 4 + 42 + 43 + 44 + 45 + ... + 42015 + 42016

C = (4 + 42 + 43 + 44 + 45 + 46) + ... + (42011 + 42012 + 42013 + 42014 + 42015 + 42016)

C = 4(1 + 4 + 42 + 43 + 44 + 45) + ... + 42011(1 + 4 + 42 + 4+ 44 + 45)

C = 4 . 1365 + 47 . 1365 + ... + 42011 . 1365

C = 1365(4 + 47 + ... + 42011)

mà 1365 \(⋮\)105

=> C \(⋮\)105

nguyễn ngọc linh
Xem chi tiết
Akai Haruma
5 tháng 2 lúc 23:28

a/

Gọi $d=ƯCLN(n+1, 2n+3)$

$\Rightarrow n+1\vdots d; 2n+3\vdots d$

$\Rightarrow 2n+3-2(n+1)\vdots d$

$\Rightarrow 1\vdots d$

$\Rightarrow d=1$
Vậy $\frac{n+1}{2n+3}$ là phân số tối giản với mọi số tự nhiên $n$

Akai Haruma
5 tháng 2 lúc 23:32

b/

Cho $a=2, b=2$ thì phân số đã cho bằng $\frac{24}{26}$ không là phân số tối giản bạn nhé. 

Bạn xem lại đề.

Đàm Ngọc Giang Nam
Xem chi tiết
Đàm Ngọc Giang Nam
22 tháng 7 2015 lúc 15:39

Làm nhanh trong ngày hôm nay và ngày mai hộ mình nha 

trân thành cảm ơn 

hikari
Xem chi tiết
Hà Thị Thủy Ngân
Xem chi tiết
Phùng Tuấn Minh
Xem chi tiết
Trần Hoàng Thiên Bảo
Xem chi tiết