Phủ định của mệnh đề “9 không phải số nguyên tố” là:
A. “9 không là số nguyên tố”
B. “Không phải 9 là số nguyên tố”
C. “9 là số nguyên tố”
D. “9 là hợp số”
Phủ định của mệnh đề “9 không phải số nguyên tố” là:
A. “9 không là số nguyên tố”
B. “Không phải 9 là số nguyên tố”
C. “9 là số nguyên tố”
D. “9 là hợp số”
Đáp án C
Phủ định của mệnh đề “99 không phải số nguyên tố” là: “99 là số nguyên tố”.
Xác định tính đúng sai của mệnh đề sau và tìm phủ định của mệnh đề: B:" Tồn tại số tự nhiên là số nguyên tố".
A. Mệnh đề B sai và B ¯ : “Mọi số tự nhiêu đều không phải là số nguyên tố"
B. Mệnh đề B đúng và B ¯ : "Tồn tại số tự nhiêu không là số nguyên tố"
C. Mệnh đề B sai và B ¯ : "Mọi số tự nhiêu đều là số nguyên tố"
D. Mệnh đề B đúng và B ¯ : "Mọi số tự nhiêu đều không phải là số nguyên tố"
Cho mệnh đề P: “5 là số có hai chữ số” và Q là một trong các mệnh đề: “16 chia hết cho 8”; “4 là số nguyên tố”; “ 2 là số vô tỉ”; “4 là số tự nhiên”
Số mệnh đề thỏa mãn P ⇒ Q là mệnh đề sai là:
A. 0
B. 3
C. 1
D. 4
Đáp án A
Dễ thấy mệnh đề P: “5 là số có hai chữ số” là mệnh đề sai nên mệnh đề Q là mệnh đề nào cũng luôn thỏa mãn P => Q là mệnh đề đúng.
Vậy không có mệnh đề nào thỏa mãn bài toán.
Mệnh đề phủ định của mệnh đề P ( x ) : " ∃ x ∈ R : x 2 + 2 x + 5 là số nguyên tố” là:
A. ∀ x ∉ R : x 2 + 2 x + 5 là hợp số
B. ∃ x ∈ R : x 2 + 2 x + 5 là hợp số
C. ∀ x ∈ R : x 2 + 2 x + 5 là hợp số
D. ∃ x ∈ R : x 2 + 2 x + 5 là số thực
Mệnh đề phủ định của mệnh đề P: " ∃ x ∈ ℤ : x 2 + x + 1 là một số nguyên tố" là:
A. " ∀ x ∈ ℤ : x 2 + x + 1 là số nguyên tố"
B. " ∀ x ∈ ℤ : x 2 + x + 1 không là số nguyên tố"
C. " ∃ x ∈ ℤ : x 2 + x + 1 là số thực"
D. " ∃ x ∈ ℤ : x 2 + x + 1 là hợp số"
Mệnh đề phủ định của mệnh đề P: " ∃ x ∈ ℤ : x 2 + x + 1 là một số nguyên tố" là:
B. " ∀ x ∈ ℤ : x 2 + x + 1 là 1 số nguyên tố"
Đáp án B
Phủ định của mệnh đề “ ∃x
∈ R, x2 + 2x + 5 là số nguyên tố” là
A. ∀x ∈ R , x2 + 2x + 5 là hợp số
B. ∃x ∈ R , x2 + 2x + 5 là hợp số
C. ∀x ∉ R , x2 + 2x + 5 là hợp số
D. ∃x ∈ R , x2 + 2x + 5 là số thực
Đáp án: A
Phủ định của ∃x ∈ R là ∀x ∈ R . Phủ định của x2 + 2x + 5 là số nguyên tố là x2 + 2x + 5 là hợp số.
Hãy xem tính đúng sai của mệnh đề: A " Có 2005 số tự nhiên mà mang trong chúng không một số nào là một số nguyên tố "
Trong các câu sau
a. Tam giác cân có hai góc bằng nhau phải không?
b. Một tháng có tối đa 5 ngày chủ nhật.
c. π là số không nhỏ hơn 4.
d. Có bao nhiêu số nguyên tố?
e. Đồ thị của hàm số y = ax2 (a ≠ 0) là một đường parabol.
Số mệnh đề và số mệnh đề đúng là:
A. 3 mệnh đề, 2 mệnh đề đúng
B. 3 mệnh đề, 3 mệnh đề đúng.
C. 5 mệnh đề, 3 mệnh đề đúng.
D. 5 mệnh đề, 2 mệnh đề đúng.
Đáp án: A
b, c, e là mệnh đề, mệnh đề b, e là mệnh đề đúng.
Mệnh đề c sai vì π là số nhỏ hơn 4.
a, d là câu hỏi chưa biết tính đúng sai nên không là mệnh đề.
Cho mệnh đề: "Với mọi số nguyên n không chia hết cho 3, n 2 − 1 chia hết cho 3". Mệnh đề phủ định của mệnh đề trên là mệnh đề nào dưới đây?
A. "Tồn tại số nguyên n không chia hết cho 3, n 2 − 1 không chia hết cho 3";
B. "Tồn tại số nguyên n không chia hết cho 3, n 2 − 1 chia hết cho 3";
C. "Tồn tại số nguyên n chia hết cho 3, n 2 − 1 chia hết cho 3";
D. "Tồn tại số nguyên n chia hết cho 3, n 2 − 1 không chia hết cho 3";
Mệnh đề: "Với mọi số nguyên n không chia hết cho 3, n 2 − 1 chia hết cho 3".
Mệnh đề phủ định của mệnh đề trên là "Tồn tại số nguyên n không chia hết cho 3, n 2 − 1 không chia hết cho 3".
Mệnh đề phủ định của mệnh đề " ∀ x ∈ X ; P ( x ) " là " ∃ x ∈ X ; P ( x ) ¯ "
Đáp án A
Giải giúp mình bài này với: Cho a và b là 2 số tự nhiên khác 0. Biét trong4 mệnh đề sau thì có 3 mệnh đề đúng và 1 mệnh đề sai
1)a+1 là bội của 3
2)(a+b) chia hết cho 2
3)a+7b là số nguyên tố.
4) a=2b+5. Tìm a và b ( nhanh lên nhé mai mình phải nộp bài rồi )