x phần 5=y phần 7=z phần 2 và y-x=48
x+3 phần 2=y-5 phần 4=z +2 phần 3 và 2x-3y =-48
tìm x, y, z
\(\frac{x+3}{2}=\frac{y-5}{4}=\frac{2x-3y}{4-12}=\frac{-48}{8}=-6\)
\(\Rightarrow\)\(x+3=-6\)
\(x=-6-3=-9\)
\(y-5=-6\)
\(y=-6+5=-1\)
Tìm x,y,z biết:12x-15y phần 7 = 20z -12x phần 9 = 15y-20z phần 11
và x+y+z = 48.Tìm x;y;z ?
\(\frac{12x-15y}{7}=\frac{20z-12x}{9}=\frac{15y-20z}{11}=\frac{12x-15y+20z-12x+15y-20z}{7+9+11}=0\)
\(12x-15y=0\Rightarrow4x=5y\Rightarrow\frac{x}{5}=\frac{y}{4}\)
\(20z-12x=0\Rightarrow5z=3x\Rightarrow\frac{z}{3}=\frac{x}{5}\)
\(15y-20z=0\Rightarrow3y=4z\Rightarrow\frac{y}{4}=\frac{z}{3}\)
\(\Rightarrow\frac{x}{5}=\frac{y}{4}=\frac{z}{3}=\frac{x+y+z}{5+4+3}=\frac{48}{12}=4\)
ta có;x=4x5=20
y=4x4=16
z=4x3=12
sde dQTYTWAYEGFSAYEFGEYSARR WAFWIUFB A RR qiiRY ii yÌU ẨU YIUWYR URH Y Y2QUR2QGyrg Y4
KQWFJ | Ị |
Ị | Ị |
Ị | Ị |
ỊIW | FU |
ÌUEI | F |
ỊU | ÌU |
I | ÌUI |
FUI | ÙI |
Ù | 8FU |
ÌU | ÌU |
Ì | ÌU |
ÌU | ÌU |
ÌU | Ì |
Ì | IUI |
I | |
I | I |
I | FI |
I | Ì |
Ì | ÙIU |
Ì | IUFI |
I | I |
I | |
IU | IU |
Ì | FIF |
IU | UI |
U | FJ |
JFI | FUFNUFYFFTCBBYY |
7 | |
7 | ỲB |
FYD | YC87BBDYBUDYYY |
Y | |
7FYTF7 | YB7BDYD7OYBE |
Y | 7 |
YD7DY7YB | 7 YB |
ED7 | YE7 |
YD87 | BEY |
7BE8 | YDU |
E7E | YEQY7 |
7YYE7 | YE7 |
YE | 7WY |
7 | 7WY |
7 | YWWY |
7 | |
78YW7 | Y 7W |
YW7 | ƯY |
7EY | 7EYE7BEY |
7EE7 | BYE |
7EY | E7 |
YE7Y 7 | Y |
7EYB | 7EY |
7EY | 7E |
Bài 1 : Tìm các số a,b,c biết :
a) a phần 3 = b phần 2 ; b phần 7 = c phần 5 và 3x - 7b - 5c = 30
b) 7a = 9b = 21c và a - b + c = -15
Bài 2 : Tìm x,y,z biết :
a) x : y : z = 5 : 3 : 4 và x + 2y - z = -121
b) 5x = 2y ; 3y = 5z và x + y + z = -976
c) x phần 3 = y phần 12 = z phần 5 và xyz =22,5
d) x phần 3 = y phần 7 = z phần và x^2 - y^2 + z^2 = -60
\(\frac{a}{3}=\frac{b}{2};\frac{b}{7}=\frac{c}{5}\)
Vì \(\frac{a}{3}=\frac{b}{2};\frac{b}{7}=\frac{c}{5}\)
=> \(\frac{a}{3}=\frac{b}{2}\Rightarrow\frac{a}{21}=\frac{b}{14}\)(1)
\(\frac{b}{7}=\frac{c}{5}\Rightarrow\frac{b}{14}=\frac{c}{10}\)(2)
Từ (1) và (2) \(\Rightarrow\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\)
\(\Rightarrow\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\Rightarrow\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}\)
Theo tính chất dãy tỉ số bằng nhau:
\(\Rightarrow\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}\Rightarrow\frac{3a-7b+5c}{63-98+50}=\frac{30}{15}=2\)
Do đó: \(\Rightarrow\hept{\begin{cases}\frac{a}{21}=2\Rightarrow a=42\\\frac{b}{14}=2\Rightarrow b=28\\\frac{c}{10}=2\Rightarrow c=20\end{cases}}\)
Vậy: a = 42
b = 28
c = 20
Bài 1:
a)
Ta có: \(\frac{a}{3}=\frac{b}{2}\)
\(\Rightarrow\frac{a}{3}.\frac{1}{7}=\frac{b}{2}.\frac{1}{7}\)
\(\Rightarrow\frac{a}{21}=\frac{b}{14}\)
Và: \(\frac{b}{7}=\frac{c}{5}\)
=> \(\frac{b}{7}.\frac{1}{2}=\frac{c}{5}.\frac{1}{2}\)
=> \(\frac{b}{14}=\frac{c}{10}\)
Do đó: \(\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\)
Áp dụng tính chất dãy tỉ số bằng nhau; ta có:
\(\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\)\(=\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}=\frac{3a-7b-5c}{63-98-50}\)\(=\frac{30}{-85}\)\(=-\frac{6}{17}\)
+) Với \(\frac{a}{21}=-\frac{6}{17}\Rightarrow a=-\frac{126}{17}\)
+) Với \(\frac{b}{14}=-\frac{6}{17}\Rightarrow b=-\frac{84}{17}\)
+)Với \(\frac{c}{10}=-\frac{6}{17}\Rightarrow c=-\frac{60}{17}\)
Vậỵ:..........
b)
Ta có: 7a = 9b = 21c
=> 7a/63 = 9b/63 = 21c/63
=> a/9 = b/7 = c/3
Áp dụng tính chất dãy tỉ số bằng nhau; ta có:
a/9 = b/7 = c/3 = (a-b+c) / (9-7+3) = -15/5 = -3
+) a/9 = -3 => a = -27
+) b/7 = -3 => b = -21
+) c/3 = -3 => c = -9
Vậy:..............
Bài 2:
a) Theo bài: x:y:z = 5:3:4
=> x/5 = y/3 = z/4
Áp dụng tính chất dãy tiwr số bằng nhau; ta có:
x/5 = y/3 = z/4 = ( x + 2y -z ) / ( 5 + 2.5 - 4 ) = -121 / 11 = -11
+) Với x/5 = -11 => x=-55
+) Với y/3 = -11 => y = -33
+) Với z/4 = -11 => z = -44
Vậy:......
b) _ Tương tự câu a) ở bài 1
c)
Ta đặt: x/3 = y/12 = z/5 = k ( \(k\inℤ\))
=> \(\hept{\begin{cases}x=3k\\y=12k\\z=5k\end{cases}}\)
Theo bài: xyz = 22,5
=> 3k.12k.5k = 22,5
=> 180.k3 = 22,5
=> k3 = 1/8 = (1/2)3
=> k = 1/2
Với k = 1/2 => x = 3/2; y = 6; z = 5/2
Vậy:..........
d)
\(\frac{a}{\frac{1}{7}}=\frac{b}{\frac{1}{9}}=\frac{c}{\frac{1}{21}}\)
áp dụng t.c dãy tỉ số bằng nhau ta có:
\(\frac{a}{\frac{1}{7}}=\frac{b}{\frac{1}{9}}=\frac{c}{\frac{1}{21}}=\frac{a-b+c}{\frac{1}{7}-\frac{1}{9}+\frac{1}{21}}=-\frac{15}{\frac{5}{63}}=-189\)
còn lại tự làm =)
bài 2
\(x:y:z=5:3:4\Rightarrow\frac{x}{5}=\frac{y}{3}=\frac{z}{4}=\frac{2y}{6}\)
áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{x}{5}=\frac{y}{3}=\frac{z}{4}=\frac{2y}{6}=\frac{x+2y-z}{5+6-4}=-\frac{121}{7}\)
đến đây tự tính, mk hướng dẫn cách làm thôi =)
a) x phần y = 9 phần 7 ; y phần 7 = 7 phần 3 và x-y+z = -15
b) x phần y = 7 phần 20 ; y phần z = 5 phần 8 và 2x + 5y - 2z = 100
Câu a) sai đề nhé bạn.
b) Ta có:
\(\frac{x}{y}=\frac{7}{20};\frac{y}{z}=\frac{5}{8}\) và \(2x+5y-2z=100\)
\(\Rightarrow\frac{x}{7}=\frac{y}{20};\frac{y}{5}=\frac{z}{8}\Leftrightarrow\frac{x}{7}=\frac{y}{20}=\frac{z}{32}\) và \(2x+5y-2z=100\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x}{7}=\frac{y}{20}=\frac{z}{32}=\frac{2x+5y-2z}{2.7+5.20-2.32}=\frac{100}{50}=2\)
\(\hept{\begin{cases}\frac{x}{7}=2\Rightarrow x=2.7=14\\\frac{y}{20}=2\Rightarrow y=2.20=40\\\frac{z}{32}=2\Rightarrow z=2.32=64\end{cases}}\)
Vậy \(x=14;y=40;z=64\)
Bài 3 : a) Tìm x,y,z biết :
2x = 3y ; 4y = 5z và 4x - 3y + 5z = 7
b) x^3 phần 8 = y ^3 phần 64 = z^3 phần 216 và x^2 +y^2 + z^2 = 14
Bài 4 : Cho 3 số x,y,z khác 0 thỏa mãn :
y + z - x phần x = z + x - y phần y = x + y - z phần z hãy tính giá trị biểu thức :
C = ( 1 + y phần x ) ( 1 + y phần z ) ( 1 + z phần x )
Bài 5 : Tìm x,y,z biết : 2x = 3y = 5z và | x - 2y | = 5
Gợi ý nhá
Bài 3: câu 1: làm tương tự như câu hỏi lần trước bạn gửi.
b) Bạn chỉ cần cho tử và mẫu mũ 3 lên. theé là dễ r
\(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\Rightarrow=\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\Rightarrow=\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}\)
áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)
tự tính tiếp =)
a) tìm hai số x và y biết x:2 = y: (-5) và x-y =-7
b) tìm ba số x,y,z biết x phần 2 = y phần 3 ,y phần 4 và z phần 5 và x+y-z=10
cảm ơn trước ak
a) Ta có: \(x:2=y:\left(-5\right)\)
nên \(\dfrac{x}{2}=\dfrac{y}{-5}\)
mà x-y=-7
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{-5}=\dfrac{x-y}{2-\left(-5\right)}=\dfrac{-7}{7}=-1\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{2}=-1\\\dfrac{y}{-5}=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=5\end{matrix}\right.\)
Vậy: (x,y)=(-2;5)
b) Ta có: \(\dfrac{x}{2}=\dfrac{y}{3}\)
nên \(\dfrac{x}{8}=\dfrac{y}{12}\)(1)
Ta có: \(\dfrac{y}{4}=\dfrac{z}{5}\)
nên \(\dfrac{y}{12}=\dfrac{z}{15}\)(2)
Từ (1) và (2) suy ra \(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}\)
mà x+y-z=10
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x+y-z}{8+12-15}=\dfrac{10}{5}=2\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{8}=2\\\dfrac{y}{12}=2\\\dfrac{z}{15}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=16\\y=24\\z=30\end{matrix}\right.\)
Vậy: (x,y,z)=(16;24;30)
b)
Do đó ta có
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
Tiềm x , y , z x phần 2 = y phần 7 = z phần 3 và x cộng y = 18
Các Bạn Giúp Mình Với Ạ
Tìm x,y,z biết x phần 3 = y phần 4 ; 4 phần 5 = z phần 7 và 2x + 3y-z = 186 x phần 2 = y phần 3 = z phần 5 và x+y+z = -90 2x = 3y = 5z và x-y+z = -33 3x = 2y ; 7x = 5z ; x+y+z = 32Bạn chú ý gõ đề bài bằng công thức toán!
cho 2x-3y+z=42.Tìm x;y;z biết
x phần -3 = y phần 5 ; y phần 2 = z phần 7