Những câu hỏi liên quan
Trần Huy tâm
Xem chi tiết
B.Trâm
3 tháng 10 2019 lúc 14:53

@Nguyễn Việt Lâm

Bình luận (0)
Trần Huy tâm
3 tháng 10 2019 lúc 14:53

https://hoc24.vn/id/2782086

Bình luận (0)
Nguyễn Việt Lâm
29 tháng 10 2019 lúc 14:03

Ta có đánh giá \(\frac{b+2}{\left(b+1\right)\left(b+5\right)}\ge\frac{3}{4\left(b+2\right)}\)

Thật vậy, BĐT trên tương đương:

\(4\left(b+2\right)^2\ge3\left(b+1\right)\left(b+5\right)\)

\(\Leftrightarrow b^2-2b+1\ge0\Leftrightarrow\left(b-1\right)^2\ge0\) (luôn đúng)

\(\Rightarrow\frac{\left(a+1\right)\left(b+2\right)}{\left(b+1\right)\left(b+5\right)}\ge\frac{3\left(a+1\right)}{4\left(b+2\right)}\)

Tương tự và cộng lại: \(P\ge\frac{3}{4}\left(\frac{a+1}{b+2}+\frac{b+1}{c+2}+\frac{c+1}{a+2}\right)\)

\(P\ge\frac{3}{4}\left(\frac{\left(a+1\right)^2}{ab+2a+b+2}+\frac{\left(b+1\right)^2}{bc+2b+c+2}+\frac{\left(c+1\right)^2}{ca+2c+a+2}\right)\)

\(P\ge\frac{3}{4}.\frac{\left(a+b+c+3\right)^2}{ab+bc+ca+3a+3b+3c+6}\)

\(P\ge\frac{3}{4}.\frac{a^2+b^2+c^2+2ab+2bc+2ca+6a+6b+6c+9}{ab+bc+ca+3a+3b+3c+6}\)

\(P\ge\frac{3}{4}.\frac{2ab+2bc+2ca+6a+6b+6c+12}{ab+bc+ca+3a+3b+3c+6}=\frac{3}{4}.2=\frac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

Bình luận (0)
 Khách vãng lai đã xóa
Dinh Thanh Tung
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 7 2020 lúc 21:28

\(a+b+c=abc\Leftrightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)

Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\Rightarrow xy+yz+zx=1\)

\(VT=\frac{x^2yz}{1+yz}+\frac{xy^2z}{1+zx}+\frac{xyz^2}{1+xy}=\frac{x^2yz}{xy+yz+yz+zx}+\frac{xy^2z}{xy+zx+yz+zx}+\frac{xyz^2}{xy+yz+xy+zx}\)

\(VT\le\frac{1}{4}\left(\frac{x^2yz}{xy+yz}+\frac{x^2yz}{yz+zx}+\frac{xy^2z}{xy+zx}+\frac{xy^2z}{yz+zx}+\frac{xyz^2}{xy+yz}+\frac{xyz^2}{xy+zx}\right)\)

\(VT\le\frac{1}{4}\left(\frac{x^2y}{x+y}+\frac{xy^2}{x+y}+\frac{y^2z}{y+z}+\frac{yz^2}{y+z}+\frac{x^2z}{x+z}+\frac{xz^2}{x+z}\right)\)

\(VT\le\frac{1}{4}\left(xy+yz+zx\right)=\frac{1}{4}\)

Dấu "=" xảy ra khi \(a=b=c=\sqrt{3}\)

Bình luận (0)
pham trang
Xem chi tiết
đoàn danh dũng
Xem chi tiết
Tôi Là Ai
Xem chi tiết
Thiên An
8 tháng 5 2017 lúc 18:34

Câu 2 thế y = 1 - x rồi quy đồng như bình thường là ra bn nhé

Bình luận (0)
Bùi Linh Chi
Xem chi tiết
Bùi Linh Chi
24 tháng 10 2020 lúc 19:40

Giúp mình với các bạn ơiii

Bình luận (0)
 Khách vãng lai đã xóa
Kiệt Nguyễn
24 tháng 10 2020 lúc 21:43

Theo bất đẳng thức AM - GM, ta có: \(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{1+b}{8}+\frac{1+c}{8}\ge3\sqrt[3]{\frac{a^3}{\left(1+b\right)\left(1+c\right)}.\frac{1+b}{8}.\frac{1+c}{8}}=\frac{3}{4}a\Rightarrow\frac{a^3}{\left(1+b\right)\left(1+c\right)}\ge\frac{3a}{4}-\frac{b+c}{8}-\frac{1}{4}\)Tương tự, ta được: \(\frac{b^3}{\left(1+c\right)\left(1+a\right)}\ge\frac{3b}{4}-\frac{c+a}{8}-\frac{1}{4}\)\(\frac{c^3}{\left(1+a\right)\left(1+b\right)}\ge\frac{3c}{4}-\frac{a+b}{8}-\frac{1}{4}\)

Cộng vế theo vế ba bất đẳng thức trên, ta được: \(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\ge\frac{3}{4}\left(a+b+c\right)-\frac{1}{4}\left(a+b+c\right)-\frac{3}{4}=\frac{1}{2}\left(a+b+c\right)-\frac{3}{4}\ge\frac{1}{2}.3\sqrt[3]{abc}-\frac{3}{4}=\frac{3}{4}\)Đẳng thức xảy ra khi a = b = c = 1

Bình luận (0)
 Khách vãng lai đã xóa
Nguyễn Ngọc Lan
Xem chi tiết
Le Hong Phuc
22 tháng 4 2019 lúc 16:18

Chứng minh bất đẳng thức \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\)

Có: \(\left[\left(\frac{a}{\sqrt{x}}\right)^2+\left(\frac{b}{\sqrt{y}}\right)^2+\left(\frac{c}{\sqrt{z}}\right)^2\right]\left(\sqrt{x}^2+\sqrt{y}^2+\sqrt{z}^2\right)\ge\left(a+b+c\right)^2\) (Bunyakovsky)

\(\Leftrightarrow\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\)

abc = 1 => a^2.b^2.c^2 = 1

\(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}=\frac{a^2b^2c^2}{a^3\left(b+c\right)}+\frac{a^2b^2c^2}{b^3\left(c+a\right)}+\frac{a^2b^2c^2}{c^3\left(a+b\right)}\)
\(=\frac{\left(bc\right)^2}{ab+ac}+\frac{\left(ac\right)^2}{bc+ba}+\frac{\left(ab\right)^2}{ca+cb}\ge\frac{\left(ab+ac+bc\right)^2}{2\left(ab+ac+bc\right)}=\frac{\left(ab+ac+bc\right)}{2}\)
\(\ge\frac{3\sqrt[3]{ab.ac.bc}}{2}\)(Cauchy) \(=\frac{3\sqrt[3]{\left(abc\right)^2}}{2}=\frac{3}{2}\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}a=b=c\\\frac{bc}{ab+ac}=\frac{ac}{bc+ba}+\frac{ab}{ca+cb}\Leftrightarrow\end{cases}a=b=c}\)

Mà abc=1 <=> a^3 = 1 <=> a=1 => b=c=a=1

Bình luận (0)
ღ๖ۣۜLinh
22 tháng 4 2019 lúc 16:19

https://diendantoanhoc.net/topic/80159-ch%E1%BB%A9ng-minh-frac1a2b3cfrac12a3bcfrac13bb2c-leqslant-frac316/

bạn tham khảo ở đây nhé

Bình luận (0)
Thanh Tùng DZ
22 tháng 4 2019 lúc 17:59

cách này ổn nè :

với a,b,c \(\in\)R và x,y,z > 0 . Áp dụng BĐT : \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\)

Dấu " = " xảy ra \(\Leftrightarrow\)\(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)

Ta có : \(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}=\frac{\frac{1}{a^2}}{ab+bc}+\frac{\frac{1}{b^2}}{bc+ab}+\frac{\frac{1}{c^2}}{ac+bc}\)

\(\ge\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{2\left(ab+bc+ac\right)}=\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)}\)( vì abc = 1 )

Mà \(\left(\frac{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}{3}\right)^3\ge\frac{1}{abc}\)hay \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\)

\(\Rightarrow\)\(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}\ge\frac{3}{2}\)

Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c = 1

Bình luận (0)
Nguyễn Thị Bảo Trâm
Xem chi tiết
you know
Xem chi tiết
nguyen minh nhat
29 tháng 7 2018 lúc 8:08

g12hg5221hjoplj./k';ll;

Bình luận (0)