Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Sơn
Xem chi tiết
Sorano Yuuki
31 tháng 5 2017 lúc 6:13

3 . 6 = 3 . 4 + 2 . 3 rùi đấy bạn, bn xét từng tích rùi sẽ thấy thôi.

Trần Sơn
31 tháng 5 2017 lúc 17:39

Sorano Yuuki !!! Mình hiểu rồi . Thì ra người ta tách sai =.= Cảm ơn nhé .

Đáng nhẽ là . Ta thấy 1.4=1.(2+2)

2.5 = 2.(2 + 3)
3.6 = 3.(2 + 4)
4.7 = 4.(2 + 5)
……

n(n + 3) = n(n + 1) + 2

Love Muse
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 4 2023 lúc 10:14

loading...

Lưu Hữu Minh
Xem chi tiết
Đoàn Đức Hà
8 tháng 8 2021 lúc 9:41

a) \(S=1.2+2.3+3.4+...+n\left(n+1\right)\)

\(3S=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+n\left(n+1\right)\left[\left(n+2\right)-\left(n-1\right)\right]\)

\(=1.2.3+2.3.4-1.2.3+...+n\left(n+1\right)\left(n+2\right)-\left(n-1\right)n\left(n+1\right)\)

\(=n\left(n+1\right)\left(n+2\right)\)

\(\Rightarrow S=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)

b) \(S=1.2.3+2.3.4+...+n\left(n+1\right)\left(n+2\right)\)

\(4S=1.2.3.4+2.3.4.\left(5-1\right)+...+n\left(n+1\right)\left(n+2\right)\left[\left(n+3\right)-\left(n-1\right)\right]\)

\(=1.2.3.4+2.3.4.5-1.2.3.4+...+n\left(n+1\right)\left(n+2\right)\left(n+3\right)-\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)

\(=n\left(n+1\right)\left(n+2\right)\left(n+2\right)\)

\(S=\frac{n\left(n+1\right)\left(n+2\right)\left(n+3\right)}{4}\)

c) \(S=1.4+2.5+3.6+...+n\left(n+3\right)\)

\(=1.2+1.2+2.3+2.2+3.4+3.2+...+n\left(n+1\right)+2n\)

\(=\left(1.2+2.3+3.4+...+n\left(n+1\right)\right)+2\left(1+2+3+...+n\right)\)

\(=\frac{n\left(n+1\right)\left(n+2\right)}{3}+n\left(n+1\right)\)

\(=\frac{n\left(n+1\right)\left(n+5\right)}{3}\)

Khách vãng lai đã xóa
Duong Ngoc Phuc
Xem chi tiết
Riin
Xem chi tiết
phuong
18 tháng 3 2018 lúc 19:00

1. 3S= 1.2.(3-0)+ 2.3.(4-1)+...+ n.(n+1).[(n+2)-(n-1)] 
=[1.2.3+ 2.3.4+...+ (n-1)n(n+1)+ n(n+1)(n+2)]- [0.1.2+ 1.2.3+...+(n-1)n(n+1)] 
=n(n+1)(n+2) 
=>S 

Biểu thức này dùng để tính tổng 1^2+..+n^2 rất tiện và thực tế cũng là ket quả của hệ quả trên. 
dùng cách thức tương tự có thể tính S=1.2.3+...+ n(n+1)(n+2) từ đó suy ra tổng 1^3+...+n^3 
Việc sử dụng trước kết quả tổng 1^2+...+n^2 theo tôi là ngược tiến trình.

2. S = 1.2.3 + 2.3.4 +..+ (n-1).n.(n+1) 

4S = 1.2.3.4 + 2.3.4.4 + 3.4.5.4 +..+ (n-1)n(n+1).4 

ghi dọc cho dễ nhìn: 
(k-1)k(k+1).4 = (k-1)k(k+1)[(k+2) - (k-2)] = (k-1)k(k+1)(k+2) - (k-2)(k-1)k(k+1) 
ad cho k chạy từ 2 đến n ta có: 
1.2.3.4 = 1.2.3.4 
2.3.4.4 = 2.3.4.5 - 1.2.3.4 
3.4.5.4 = 3.4.5.6 - 2.3.4.5 
... 
(n-2)(n-1)n.4 = (n-2)(n-1)n(n+1) - (n-3)(n-2)(n-1)n 
(n-1)n(n+1).4 = (n-1)n(n+1)(n+2) - (n-2)(n-1)n(n+1) 
+ + cộng lại vế theo vế + + (chú ý cơ chế rút gọn) 
4S = (n-1)n(n+1)(n+2) 

3. 

WAG.mạnhez
Xem chi tiết
Hoàng Nguyễn Văn
1 tháng 4 2019 lúc 20:32

*S=1-1/4+1/4-1/7+1/7-1/11+1/11-1/14+1/14-1/17

S=1-1/17=16/17

*M=2(1/1.2+1/2.3+...+1/15.16)

M=2(1-1/2+1/2-1/3+..+1/15-1/16)

M=2(1-1/16)

M=2.15/16

M=15/8

KAl(SO4)2·12H2O
1 tháng 4 2019 lúc 20:40

:w

\(S=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.11}+\frac{3}{11.14}+\frac{3}{14.17}\)

\(S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}\)

\(S=1-\frac{1}{17}\)

\(S=\frac{16}{17}\)

\(M=\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{15.16}\)

\(M=2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{15}-\frac{1}{16}\right)\)

\(M=2.\left(1-\frac{1}{16}\right)\)

\(M=2.\frac{15}{16}\)

\(=\frac{30}{16}=\frac{15}{8}\)

Nguyễn Mai Chi
Xem chi tiết
Anh Nhật
Xem chi tiết
Phạm Thị Hằng
Xem chi tiết