CMR 1/2<1/n+1 +1/n+2+........+1/2n<3/4
a)Cho A= 1/2^2+1/3^2+...+1/n^2.CMR A<1
b)Cho B=1/2^2+1/4^2+1/6^2+...+1/(2n)^2.CMR B<1/2
c)Cho C=3/4+8/9+15/16+...+n^2-1/n^2.CMR C<n-2
Bài 1: CMR 3/1^2*2^2 + 5/2^2*3^2 + 7/3^2*4^2 + ....... + 19/9^2*10^2 bé hơn 1
Bài 2: CMR 1/3 + 2/3^2 Bài 1: CMR 3/1^2*2^2 + 5/2^2*3^2 + 7/3^2*4^2 + ....... + 19/9^2*10^2 bé hơn 3/4
Bài 3: Cho A= 1/1*2 + 1/3*4 + 1/5*6 + .... + 1/99*100. CMR 7/12 < A < 5/6
ai giúp mình với rồi mình tink cho nha cảm ơn các bạn nhiều
Cho x>y TM: x+y<=1 CMR: 1/x^2+y^2 = 1/xy>=6
Cho a,b,c >0 TM: a+b+c<=1 CMR: (1/a^2+bc) + (1/b^2+ac)+ 1/c^2+2ab >=9
Cho a,b>0 TM: a+b<=1 ;CMR: (1/a^b^2)+4b+1/ab>=7
Cho a,b>0 TM:a+b<=1. CMR: 1/1+a^2+b^2 +1/2ab >=8/3
Cho a,b,c>0 TM: a+b+c<=3.CMR: 1/a^2+b^2+c^2 +2009/ab+bc+ac >=670
Cho x>y TM: x+y<=1 CMR: 1/x^2+y^2 = 1/xy>=6
Cho a,b,c >0 TM: a+b+c<=1 CMR: (1/a^2+bc) + (1/b^2+ac)+ 1/c^2+2ab >=9
Cho a,b>0 TM: a+b<=1 ;CMR: (1/a^b^2)+4b+1/ab>=7
Cho a,b>0 TM:a+b<=1. CMR: 1/1+a^2+b^2 +1/2ab >=8/3
Cho a,b,c>0 TM: a+b+c<=3.CMR: 1/a^2+b^2+c^2 +2009/ab+bc+ac >=670
Cho x>y TM: x+y<=1 CMR: 1/x^2+y^2 = 1/xy>=6
Cho a,b,c >0 TM: a+b+c<=1 CMR: (1/a^2+bc) + (1/b^2+ac)+ 1/c^2+2ab >=9
Cho a,b>0 TM: a+b<=1 ;CMR: (1/a^b^2)+4b+1/ab>=7
Cho a,b>0 TM:a+b<=1. CMR: 1/1+a^2+b^2 +1/2ab >=8/3
Cho a,b,c>0 TM: a+b+c<=3.CMR: 1/a^2+b^2+c^2 +2009/ab+bc+ac >=670
S=1+1/2^2+1/3^2+...+1/100^2
CMR S<2
Câu 2: CMR S<1/4 với S=1/4^2+1/6^2+...+1/(2n)^2
\(S=1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}< 1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\)
Mà \(1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}=1+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=2-\dfrac{1}{100}< 2\)
\(\Rightarrow\) \(S< 1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\)
Vậy \(S< 2\left(đpcm\right).\)
Câu 1 :
Ta có :
\(S=1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+..........+\dfrac{1}{100^2}\)
Ta thấy :
\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)
........................
\(\dfrac{1}{100^2}< \dfrac{1}{99.100}\)
\(\Leftrightarrow S< 1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+.......+\dfrac{1}{99.100}\)
\(\Leftrightarrow S< 1+1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+.....+\dfrac{1}{99}-\dfrac{1}{100}\)
\(\Leftrightarrow S< 1+1-\dfrac{1}{100}\)
\(\Leftrightarrow S< 2+\dfrac{1}{100}< 2\)
\(\Leftrightarrow S< 2\rightarrowđpcm\)
\(S=1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}\)
\(S< 1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\)
\(S< 1+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(S< 2-\dfrac{1}{100}\)
\(S< 2\rightarrowđpcm\)
Cho x>y TM: x+y<=1 CMR: 1/x^2+y^2 + 1/xy>=6
Cho a,b,c >0 TM: a+b+c<=1 CMR: (1/a^2+bc) + (1/b^2+ac)+ 1/c^2+2ab >=9
Cho a,b>0 TM: a+b<=1 ;CMR: (1/a^b^2)+ 4b + 1/ab>=7
Cho a,b>0 TM:a+b<=1. CMR: 1/1+a^2+b^2 + 1/2ab >=8/3
Cho a,b,c>0 TM: a+b+c<=3.CMR: 1/a^2+b^2+c^2 + 2009/ab+bc+ac >=670
Sử Dụng phương pháp qui nạp để giải:
1)CMR:9^2n+14 chia hết cho 5.
2)CMR:16^n-15n-1 chia hết cho 225.
3)CMR:4^n+15n-1 chia hết cho 9.
4)CMR:1+2+...+n=n(n+1)/2
5)CMR:11^n+1+12^2n-1 chia hêts cho 133
Ai xong nhanh nhất , chi tiết nhất tự biết rồi đấy!
Mình sẽ tích cho
CMR 2^1+(-2^2)+2^3+(-2^4)+.........+2^99+(-2^100) CMR A chia hết cho 6
Ta co
A=2-22+23-....-298+299-2100
=2(1-2+4)-....-298(1-2+4)
=2.3-...-298.3\(⋮3\)
Ma A chia het cho 2
(2;3)=1
=> A chia het cho 6(DPCM)
1. CMR : A= 80^2 - 79.80 + 1601 không là số nguyên tố.
2. CMR : B= 2001.2002.2003.2004 +1 là hợp số.
1. 80^2−79.80+1601 = 80 . 80 - 79 . 80 + 1600 + 1
= 80 . 80 - 79 . 80 + 80 . 20 + 1
= 80 . (80 - 79 + 20) + 1 = 80 . 21 + 1
= 80 . 20 + 80 + 1
= 80.20 + 81 = 1681
2. 2001.2002.2003.2004+1= (2005 - 4).(2005 - 1)...
<=>(2005A+4)(2005B+5+1)+1
(2005A+4) chia 5 dư 4, (2005B+5+1)chia 5 dư 1 =>(2005A+4)(2005B+5+1) chia 5 dư 4, suy ra (2005A+4)(2005B+5+1)+1 chia hết cho 5
802=80*80.
802-79*80=80*80-79*80=1*80=80. 80+1601=1681. 1681 chia hết cho 41 suy ra 802-79*80+1601 là hợp số và không là số nguyên tố