1/2.5+1/5.8+1/8.11+....+1/29.32
Tính và so sánh với 1:
S=6/2.5+6/5.8+6/8.11+...+6/29.32
\(S=2.\left(\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{29.32}\right)\)
\(S=2.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{29}-\frac{1}{32}\right)\)
\(S=2.\left(\frac{1}{2}-\frac{1}{32}\right)\)
\(S=1-\frac{1}{16}< 1\)
Vậy \(S< 1\)
12/2.5+12/5.8+12/8.11....12/29.32
\(\frac{12}{2.5}+\frac{12}{5.8}+\frac{12}{8.11}+...+\frac{12}{29.32}\)
\(=4.\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{29.32}\right)\)
\(=4.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{29}-\frac{1}{32}\right)\)
\(=4.\left(\frac{1}{2}-\frac{1}{32}\right)\)
\(=4.\frac{15}{32}\)
\(=\frac{15}{8}\)
_Chúc bạn học tốt_
\(\frac{12}{2.5}+\frac{12}{5.8}+\frac{12}{8.11}+....+\frac{12}{29.32}\)
\(=4\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{29.32}\right)\)
\(=4\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{29}-\frac{1}{32}\right)\)
\(=4\left(\frac{1}{2}-\frac{1}{32}\right)\)
\(=4.\frac{15}{32}=\frac{15}{8}\)
Đặt A= 12/2*5+12/5*8+12/8*11+....+12/29*32
A= 4*(3/2*5+3/5*8+3/8*11+...+3/29*32)
A = 4*(1/2-1/5+1/5-1/8+1/8-1/11+....+1/29-1/32)
A= 4*(1/2-1/32)
A= 4*15/32
A= 15/8
S=6/2.5+6/5.8+6/8.11+...+6/29.32 Tính tổng S và chứng minh S<1
\(S=\frac{6}{2.5}+\frac{6}{5.8}+\frac{6}{8.11}+...+\frac{6}{29.32}\)
\(S=2.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{29}-\frac{1}{32}\right)\)
\(S=2.\left(\frac{1}{2}-\frac{1}{32}\right)\)
\(S=2.\frac{15}{31}\Rightarrow S=\frac{15}{16}< 1\)
\(S=\frac{6}{2.5}+\frac{6}{5.8}+\frac{6}{8.11}+...+\frac{6}{29.32}\)
\(S=\left(\frac{1}{2}-\frac{1}{5}\right)+\left(\frac{1}{5}-\frac{1}{8}\right)+\left(\frac{1}{8}-\frac{1}{11}\right)+...+\left(\frac{1}{29}-\frac{1}{32}\right)\)
\(S=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{29}-\frac{1}{32}\)
\(S=\frac{1}{2}-\frac{1}{32}\)
\(S=\frac{17}{32}< 1\)
S=6/2.5+6/5.8+6/8.11+...+6/29.32
S=2.(1/2-1/5+1/5-1/8+1/8-1/11+...+1/29-1/32)
S=2.(1/2+1/32)
S=2.15/32
S=30/32=15/16
=>S<1
Tính tổng \(S=\frac{6}{2.5}+\frac{6}{5.8}+\frac{6}{8.11}+...........+\frac{6}{29.32}\) và chứng tỏ tổng S < 1
\(S=\frac{6}{2.5}+\frac{6}{5.8}+.......+\frac{6}{29.32}\)
\(S=2\left(\frac{3}{2.5}+\frac{3}{5.8}+......+\frac{3}{29.32}\right)\)
\(S=2\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+......+\frac{1}{29}-\frac{1}{32}\right)\)
\(S=2\left(\frac{1}{2}-\frac{1}{32}\right)\)
\(S=2.\frac{15}{32}\)
\(S=\frac{15}{16}< 1\RightarrowĐPCM\)
Vậy \(S=\frac{15}{16}\)
Bài 1:tính tổng S =6/2.5 +6/5.8 +6/8.11 + ... +6/29.32 và so sánh S với 1.
Bài 2 :Tìm x :
a, x+1/2 =8/x+1
b, x:(19/2 - 3/2 )=0,4 +2/9 - 2/11 /1,6+8/9 -8/11
Bài 1 :
S = \(\frac{6}{2.5}+\frac{6}{5.8}+...+\frac{6}{29.32}\)
= 2 . \(\left(\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{29.32}\right)\)
= 2 . \(\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{29}-\frac{1}{32}\right)\)
= 2 . \(\left(\frac{1}{2}-\frac{1}{32}\right)\)= ....
Chứng tỏ tổng sau nhỏ hơn 1:
\(S1=\frac{3}{4}+\frac{3}{4.7}+\frac{3}{7.10}+.....+\frac{3}{40.41}\)
\(S1=\frac{6}{2.5}+\frac{6}{5.8}+\frac{6}{8.11}+.....+\frac{6}{29.32}\)
cả 2 cái cộng lại hay là từng cái một vậy bạn?
a) Ý bạn là: \(S_1=\frac{3}{4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+...+\frac{3}{40\cdot43}\)đúng không?
\(S_1=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{40}-\frac{1}{43}\)
\(S_1=1-\frac{1}{43}< 1\left(đpcm\right)\)
b) \(S_2=\frac{6}{2\cdot5}+\frac{6}{5.8}+\frac{6}{8\cdot11}+...+\frac{6}{29\cdot32}\)
=>\(\frac{S_2}{2}=\frac{3}{2\cdot5}+\frac{3}{5.8}+\frac{3}{8\cdot11}+...+\frac{3}{29\cdot32}\)
\(\frac{S_2}{2}=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{29}-\frac{1}{32}\)
\(\frac{S_2}{2}=\frac{1}{2}-\frac{1}{32}=\frac{16}{32}-\frac{1}{32}=\frac{15}{32}\)
=>\(S_2=\frac{15}{32}\cdot2=\frac{15}{16}< 1\left(đpcm\right)\)
Tính nhanh E = 3/2.5 + 3/5.8 + 3/8.11 + ..... + 3/29.32
Giaỉ nhanh giúp m\k nha cần gấp lắm !
= 1/2 - 1/5 + 1/5 - 1/8 + 1/8 - 1/11 + .... + 1/29 - 1/32
= 1/2 - 1/32
= ..... ( tự bấm máy tính nhé )
Ta có: \(E=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+....+\frac{1}{29}-\frac{1}{32}\)
\(\Rightarrow E=\frac{1}{2}-\frac{1}{32}\)
\(\Rightarrow E=\frac{16-1}{32}=\frac{15}{32}\)
Vậy \(E=\frac{15}{32}\)
E=5-2/2×5 + 8-5/5×8+11-8/8×11+.....+32-29/29×32
E=1/2-1/5+1/5-1/8+1/8-1/11+......+1/29-1/32
E=1/2-1/32
E=15/32
cho S= 9 phần 2.5+9 phần 5. 8 + 9 phần 8.11+..+9 phần 29.32. CM S>1
Ta có: 9/2.5 + 9/5.8 + 9/9.11+...+ 9/29.32
=>9.(1/2 -1/5 + 1/5 - 1/8 +...+1/29 -1/32)
=>9.( 1/2 -1/32)
=>9. 15/32
=>45/32
Suy ra 45/32 >1 nên S>1
Ta có: \(S=\dfrac{9}{2\cdot5}+\dfrac{9}{5\cdot8}+\dfrac{9}{8\cdot11}+...+\dfrac{9}{29\cdot32}\)
\(=3\left(\dfrac{3}{2\cdot5}+\dfrac{3}{5\cdot8}+\dfrac{3}{8\cdot11}+...+\dfrac{3}{29\cdot32}\right)\)
\(=3\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{29}-\dfrac{1}{32}\right)\)
\(=3\left(\dfrac{1}{2}-\dfrac{1}{32}\right)\)
\(=3\cdot\dfrac{15}{32}=\dfrac{45}{32}>1\)
A= 1/2.5 + 1/5.8 + 1/8.11 + .....+ 1/150.153
tham khảo ở đây nha
https://olm.vn/hoi-dap/detail/222956295982.html
\(A=\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{150}-\dfrac{1}{153}\right)\)
\(=\dfrac{1}{3}.\dfrac{151}{306}=\dfrac{151}{918}\)