Cho P(x)=ax2+bx+c và 5a+b+2c=0.Chứng minh P(-1).P(x) \(\le\) 0
\(P\left(2\right)=4a+2b+c=2\left(5a+b+2c\right)-6a-3c=-6a-3c\)
\(P\left(-1\right)=a-b+c=-\left(5a+b+2c\right)+6a+3c\)
\(\Rightarrow P\left(2\right).P\left(-1\right)=\left(-6a-3c\right)\left(6a+3c\right)=-\left(6a+3c\right)^2\le0\) (đpcm)
Cho đa thức P(x)= ax2 + bx + c biết 5a+b+2c=0
Chứng tỏ P(2).P(-1)<0
Giải giúp mình nhé!
Cho đa thức Q(x) = ax2+bx+c
a. Biết 5a+b+2c=0. Chứng minh rằng: Q(2).Q(1)\(\le\)0.
b. Biết Q(x)=0 với mọi x. Chứng minh rằng a=b=c=0.
Cho đa thức P(x) = ax2+bx+c và 5a - b + c = 0. Chứng tỏ rằng P(1). P(3) ≤ 0
\(a=1,b=6,c=1\)
\(5a-b+c=5-6+1=0\)
\(P\left(1\right).P\left(3\right)=\left(1.1^2+6.1+1\right).\left(1.3^2+6.3+1\right)>0?\)
Cho đa thức P(x)=ax2 +bx +c. Chứng tỏ rằng P(-1).P(-2)≤ 0 biết rằng 5a -3b +2c=0
Nếu như theo mik ns thì bài toán làm sau đây
\(p\left(-1\right)=a\left(-1\right)^2-b.1+c=a-b+c\) (1)
\(p\left(2\right)=a\left(2^2\right)+b.2+c=4a-2b+c\) (2)
Lấy (1)+(2)
\(p\left(-1\right)+p\left(-2\right)=5a-3b+2c=0\)
\(p\left(-1\right)=-P\left(-2\right)\)\(=p\left(2\right)\)
Lấy p(-1).p(2) trái dấu
\(\Rightarrow p\left(-1\right).p\left(2\right)\le0\)
\(\Rightarrow p\left(-1\right).p\left(-2\right)\le0\)
Cho đa thức:
H(x)= ax2 + bx + c
Biết 5a - 3b + 2c = 0
CHỨNG MINH: H(-1).H(-2) ≤ 0
CÁC BẠN GIÚP MÌNH VỚI NHÉ!!!
Bạn ơi, đăng qua môn toán nhé ở đây là môn tiếng anh, lần sau chú ý hơn nha
Cho đa thức Q(x)=ax^2+bx+c
a) biết 5a+b+2c=0 . Chứng tỏ rằng Q(x).Q(-1) \(\le\) 0
b) biết Q(x)=0 với mọi x . Chứng tỏ rằng a=b=c=0
a) Ta có : \(Q\left(2\right)=4a+2b+c\)
\(Q\left(-1\right)=a-b+c\)
\(\Rightarrow Q\left(2\right)+Q\left(-1\right)=5a+b+2c=0\)
\(\Rightarrow Q\left(2\right)=-Q\left(-1\right)\)
\(\Rightarrow Q\left(2\right).Q\left(-1\right)\le0\)
b) Vì \(Q\left(x\right)=0\) với mọi $x$
$\to Q(0) = c=0$
$Q(1) = a+b+c=a+b=0$ $(1)$
$Q(-1) = a-b +c = a-b=0$ $(2)$
Từ $(1)$ và $(2)$ $\to a=b=c=0$
Cho đa thức P(x) = ax^2 + bx + c.
Chứng tỏ rằng P(-1).P(-2) ≤ 0 biết rằng 5a – 3b + 2c = 0
P(-1) = (a – b + c);
P(-2) = (4a – 2b + c)
P(-1) + P(-2) = (a – b + c) + (4a – 2b + c) = 5a – 3b + 2c = 0
Þ P(-1) = – P(-2)
Do đó P(-1).P(-2) = – [P(-2)]^2 ≤ 0
Vậy P(-1).P(-2) ≤ 0
1) Tìm nghiệm của các đa thức sau :
a) P(x) = 3x + 21
b) Q(x) = 2x - 7 - (x + 5)
2) Cho đa thức G(x) = ax2 + bx + c và 5a + b + 2c = 0
Chứng minh rằng : G(-1).G(-2) ≤ 0
Câu 1:
a: Đặt P(x)=0
=>3x+21=0
hay x=-7
b: Đặt Q(x)=0
=>2x-7-x-5=0
=>x-12=0
hay x=12