Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nikki 16
Xem chi tiết
Yuu Shinn
29 tháng 10 2018 lúc 19:14

2) Vì p là số nguyên tố nên ta xét các trường hợp sau:

a) Với p = 2 thì p + 10 = 2 + 10 = 12 là hợp số (loại), tương tự với p + 20 cũng là hợp số.

Với p = 3 thì p + 10 = 3 + 10 = 13 là số nguyên tố (nhận); p + 20 = 3 + 20 = 23 là số nguyên tố (nhận)

Vì p là số nguyên tố và p > 3 nên p có dạng 3k + 1; 3k + 2

Với p = 3k + 1 => p + 10 = 3k + 1 + 10 = 3k + 11

Lê Đức Huy
Xem chi tiết
Uchiha Nguyễn
9 tháng 11 2015 lúc 20:22

Lẻ + lẻ = chẵn => hợp số

Lê Đức Tuấn
9 tháng 11 2015 lúc 20:21

tick đi rồi mình làm cho

tatrunghieu
Xem chi tiết
Mai Chi
Xem chi tiết
nguyễn ngọc ánh nhi
20 tháng 11 2015 lúc 9:09

không có số nào đâu bạn vì theo khái niệm thì khi nhân một số nguyên tố với một số nguyên tố thì nó sẽ là hợp số vì khi đó nó đã có trên 2 ước rồi bạn

đúng quá đúng ko các bạn tick cho mình nhé

 

Tớ Tên Trung
8 tháng 1 2016 lúc 21:29

cho câu hỏi khác đi khó quá ???

Mai Chi
Xem chi tiết
thomas lê
27 tháng 8 2015 lúc 21:18

giả sử p<q<r

+) Nếu p=3

+) Nếu q=3

Xét số tự nhiên a không chia hết cho3       =>a=3k+1 hoặc a=3k+2 (k thuộc N*)

-với a=3k+1

-với a=3k+2

=>với a không chia hết cho 3

=>a2 không chia hết cho 3 => a2 chia 3 dư 1 (tự chứng minh)

do đó p2;q2;rchia 3 dư 1

=>p2+q2+r2 chia hết cho 3 mà p2+q2+r2>3

=>p2+q2+r2 là hợp số

            Vậy p=3;q=5;r=7

lila ma ri
Xem chi tiết
Rikka
12 tháng 10 2016 lúc 21:07

năm 1901

Thủ Lĩnh Thẻ Bài SAKURA
12 tháng 10 2016 lúc 21:22

năm 1963

khucdannhi
Xem chi tiết
Nguyệt
13 tháng 6 2018 lúc 14:06

vì p là SNT lớn lơn 3 => p có dạng: 3k+1 hoặc 3k+2( k thuộc N*)

TH1: p=3k+1

=> 2p+1=2.(3k+1)+1=6k+2+1=6k+3 chia hết cho 3 ( TM)

TH2: p=3k+2

=> 4p+1=4.(3k+2)+1=12k+8+1=12k+9 chia hết cho 3(TM)

vậy nếu p là SNT lớn hơn 3 và  2p+1 cũng là số nguyên tố thì 4p+1 là hợp số

Phương
Xem chi tiết
mai
Xem chi tiết
Nguyễn Như Nam
5 tháng 10 2016 lúc 8:34

a) - Do p là số nguyên tố nên p là số tự nhiên.

*) Xét p=3k+1 => \(p^2+8=\left(3k+1\right)^2+8=9k^2+6k+9⋮3\) (hợp số)

*) Xét p=3k+2 => \(p^2+8=\left(3k+2\right)^2+8=9k^2+12k+12⋮3\) (hợp số)

*) Xét p=3k => k=1 do p là số nguyên tố => \(p^2+8=9+8=17\) (t/m)

Ta có: \(p^2+2=11\). Mà 11 là số nguyên tố => điều phải chứng minh.

b) (Làm tương tự bài trên)

 - Do p là số nguyên tố => p là số tự nhiên.

*) Xét p=3k+1 => \(8p^2+1=8\left(3k+1\right)^2+1=8\left(9k^2+6k+1\right)+1=3k.8\left(3k+2\right)+\left(8+1\right)⋮3\)(hợp số)

*) Xét p=3k+2 => \(8p^2+1=8\left(3k+2\right)^2+1=8\left(9k^2+12k+4\right)+1=3k.8\left(3k+4\right)+\left(32+1\right)⋮3\) (hợp số)

*) Xét p=3k => k=1 Do p là số nguyên tố => \(8p^2+1=8.9+1=73\)(t/m)

Ta có : \(2p+1=7\). Mà 7 là số nguyên tố => Điều phải chứng minh.

mai
30 tháng 9 2016 lúc 14:00

làm ơn giải hộ mình nhanh lên