Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Muỗi đốt
Xem chi tiết
Muỗi đốt
Xem chi tiết
Đinh Thùy Linh
5 tháng 7 2016 lúc 18:38

Đặt \(g\left(x\right)=x^{2015}-x^{2014}+x^{2013}-...+x-1\)

Dễ thấy: \(f\left(x\right)=x^{2016}-2013\times g\left(x\right)\Rightarrow f\left(2012\right)=2012^{2016}-2013\times g\left(2012\right)\)(a)

Ta có: \(\left(x+1\right)\times g\left(x\right)=\left(x+1\right)\left(x^{2015}-x^{2014}+x^{2013}-...+x-1\right)\)

\(\Rightarrow\left(x+1\right)\times g\left(x\right)=x^{2016}-1\)

\(\Rightarrow\left(2012+1\right)\times g\left(2012\right)=2012^{2016}-1\)hay: \(2013\times g\left(2012\right)=2012^{2016}-1\)

Thay vào (a) ta có: \(f\left(2012\right)=2012^{2016}-\left(2012^{2016}-1\right)=1\).

quỳnh hoa
Xem chi tiết
Võ Thanh Lâm
1 tháng 5 2017 lúc 21:51

\(2013.y+y.\frac{1}{2013}-2013=\frac{1}{2013}\)

\(\Rightarrow2013.y+y.\frac{1}{2013}=\frac{1}{2013}+2013\)

\(\Rightarrow y.\left(2013+\frac{1}{2013}\right)=2013+\frac{1}{2013}\)

\(\Rightarrow y=1\)

Nguyễn Tiến Dũng
Xem chi tiết
Trần Việt Linh
12 tháng 12 2016 lúc 21:50

\(\frac{2013x}{xy+2013x+2013}+\frac{y}{yz+y+2013}+\frac{z}{xz+z+1}\)

\(=\frac{x^2yz}{xy+x^2yz+xyz}+\frac{y}{yz+y+xyz}+\frac{z}{xz+z+1}\)

\(=\frac{xz}{1+xz+z}+\frac{1}{z+1+xz}+\frac{z}{xz+z+1}\)

\(=\frac{xz+z+1}{xz+z+1}=1\)

=>đpcm

soyeon_Tiểubàng giải
12 tháng 12 2016 lúc 21:50

2013x/xy+2013x+2013 + y/yz+y+2013 + z/xz+z+1

= xyz.x/xy+xyz.x+xyz + y/yz+y+xyz + z/xz+z+1

= xz/1+xz+z + 1/z+1+xz + z/xz+z+1

= xz+1+x/1+xz+x = 1 (đpcm)

Lightning Farron
12 tháng 12 2016 lúc 21:52

Thay xyz=2013 vào ta có:

\(\frac{xyz\cdot x}{xy+xyz\cdot x+xyz}+\frac{y}{yz+y+xyz}+\frac{z}{xz+z+1}\)

\(=\frac{x^2yz}{xy+x^2yz+xyz}+\frac{y}{y\left(z+1+xz\right)}+\frac{z}{xz+z+1}\)

\(=\frac{xy\cdot xz}{xy\left(xz+z+1\right)}+\frac{1}{xz+z+1}+\frac{z}{xz+z+1}\)

\(=\frac{xz}{xz+z+1}+\frac{1}{xz+z+1}+\frac{z}{xz+z+1}\)

\(=\frac{xz+1+z}{xz+z+1}=1\) (Đpcm)

Khoa Nguyễn Review Game
Xem chi tiết
Nhật Hạ
30 tháng 5 2020 lúc 11:39

f(x) = x2013 - 2013x2012 + 2013x2011 - 2013x2010 + .... + 2013x - 1 

= x2013 - (2012 + 1)x2012 + (2012 + 1)x2011 - (2012 + 1)x2010 + .... + (2012 + 1)x - 1 

= x2013 - (x + 1)x2012 + (x + 1)x2011 - (x + 1)x2010 + .... + (x + 1)x - 1 

= x2013 - x . x2012 - 1 . x2012 + x . x2011 + 1 . x2011 - x . x2010 - 1 . x2010 + ... + x . x + 1 . x - 1

= x2013 - x2013 - x2012 + x2012 + x2011 - x2011 - x2010 + .... + x2 + x - 1

= x - 1 = 2012 - 1 = 2011

Khách vãng lai đã xóa
Phúc Nguyên Nguyễn
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 3 2022 lúc 7:42

\(\lim\limits_{x\rightarrow0}\dfrac{\left(1+2013x\right)^{2014}-\left(1-2014x\right)^{2013}}{x^2}\)

\(=\lim\limits_{x\rightarrow0}\dfrac{2013.2014\left(1+2013x\right)^{2013}+2013.2014\left(1-2014x\right)^{2012}}{2x}\)

\(=\lim\limits_{x\rightarrow0}\dfrac{2013^3.2014\left(1+2013x\right)^{2012}-2012.2013.2014^2\left(1-2014x\right)^{2011}}{2}\)

\(=\dfrac{2013^3.2014-2012.2013.2014^2}{2}=...\)

Nguyễn MInh Quang
Xem chi tiết
Nguyễn Tạ Kiều Trinh
10 tháng 5 2015 lúc 10:04

Quy đồng vế trái ta có

\(\frac{4026}{x^4+x^2+1}=\frac{2014}{x.\left(x^4+x^2+1\right)}\)

Lại quy đồng 2 vế ta được

\(\frac{4026.x}{x.\left(x^4+x^2+1\right)}=\frac{2014}{x.\left(x^4+x^2+1\right)}\)

Suy ra: 4026.x =2014

<=>\(x=\frac{2014}{4026}\)

rút gọn là xong.OK?

 

Nguyen Tuan Dung
Xem chi tiết