Bài 2: Tính
cho f(x) = x^2016 - 2013x^2015+ 2013x^2014 -2013x^2013 + ........+ 2013x^2 -2013x +2013
với f (2012)
Tính
cho f(x) = x^2016 - 2013x^2015+ 2013x^2014 -2013x^2013 + ........+ 2013x^2 -2013x +2013
với f (2012)
Tính giá trị của đa thức:
F(x) = x^2013 - 2013x^2012 + 2013x^2011 - 2013x^2010 + ... + 2013x- 1 tại x = 2012
Cho \(f\left(x\right)=x^{2013}-2013x^{2012}+2013x^{2011}-...+2013x-1\). Tính \(f\left(2012\right)\)
Cho f(x)=x\(^{2013}\) + 2013x\(^{2012}\) + 2013x\(^{2011}\) - ..... +2013x -1. Tính f(2012)
Tìm x biết: x+2x+3x+....+2013x=2013. 2017
Tìm x biết x+2x+3x+..........................+2013x = 2013 * 1007
Trả lời x =......................................?
\(ChoA=\frac{2013}{2}+\frac{2013}{3}+\frac{2013}{4}+...+\frac{2013}{2013}\) và B=\(\frac{2013}{1}+\frac{2012}{2}+\frac{2011}{3}+...+\frac{1}{2013}\)Tính\(\frac{A}{B}\)
Cho x, y, z thỏa mãn : \(\frac{x}{2011}=\frac{y}{2012}=\frac{z}{2013}\) . Chứng minh rằng \(\frac{2012z-2013y}{2011}=\frac{2013x-2011z}{2012}=\frac{2011y-2012x}{2013}\)