Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
cô bé ngốc nghếch
Xem chi tiết
Thắng Nguyễn
27 tháng 3 2016 lúc 9:19

\(\Leftrightarrow1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2003}-\frac{1}{2005}=\frac{1}{x}\)

\(\Rightarrow1-\frac{1}{2005}=\frac{1}{x}\)

\(\Rightarrow\frac{2004}{2005}=\frac{1}{x}\)

tới đây tự làm nhé

cô bé ngốc nghếch
27 tháng 3 2016 lúc 13:30

Nhưng sao suy ra x đc vậy pạn

Phan thị Ngọc Huyền
Xem chi tiết
Phan thị Ngọc Huyền
11 tháng 7 2016 lúc 14:22

tính tổng 

Phương Trình Hai Ẩn
11 tháng 7 2016 lúc 14:24

\(=\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{2003.2005}\)

\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2003}-\frac{1}{2005}\right)\)

\(=\frac{1}{2}.\left(1-\frac{1}{2005}\right)\)

\(=\frac{1}{2}.\frac{2004}{2005}\)

\(=\frac{1002}{2005}\)

hhhhhhhhhhhhhhhhhhh
11 tháng 7 2016 lúc 14:25

yêu Sáng

do huong giang
Xem chi tiết
Nguyễn Thanh Hằng
28 tháng 3 2018 lúc 11:49

Đặt :

\(A=\dfrac{1}{1.3}+\dfrac{1}{3.5}+....+\dfrac{1}{2003.2005}\)

\(\Leftrightarrow2A=\dfrac{2}{1.3}+\dfrac{2}{3.5}+.......+\dfrac{2}{2003.2005}\)

\(\Leftrightarrow2A=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+.......+\dfrac{1}{2003}-\dfrac{1}{2005}\)

\(\Leftrightarrow2A=1-\dfrac{1}{2005}\)

\(\Leftrightarrow2A=\dfrac{2004}{2005}\)

\(\Leftrightarrow A=\dfrac{1002}{2005}\)

Nguyễn Thị Thu HIền
Xem chi tiết
Nguyễn Huy Tú
16 tháng 8 2017 lúc 20:55

\(M=\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{2003.2005}\)

\(=\dfrac{1}{2}\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{2003.2005}\right)\)

\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2003}-\dfrac{1}{2005}\right)\)

\(=\dfrac{1}{2}\left(1-\dfrac{1}{2005}\right)\)

\(=\dfrac{1}{2}.\dfrac{2004}{2005}=\dfrac{1002}{2005}\)

Võ Cherry
16 tháng 8 2017 lúc 20:59

2M= 1/1.3+1/3.5+1/5.7+...+1/2003.2005

2M= 1/1-1/3+1/3-1/5+...+1/2003-1/2005

2M= 1/1-1/2005

2M= 2004/2005

M= 2004/2005:2

M=1002/2005

thám tử
16 tháng 8 2017 lúc 20:59

\(M=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{2003.2005}\)

= \(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2003}-\dfrac{1}{2005}\)

= \(1-\dfrac{1}{2005}\)

= \(\dfrac{2004}{2005}\)

báchnguyễn2011
Xem chi tiết
Nguyễn Ngọc Anh Minh
7 tháng 7 2023 lúc 8:47

 

Đặt biểu thức là A

\(2A=\dfrac{3-1}{1.3}+\dfrac{5-3}{3.5}+\dfrac{7-5}{5.7}+...+\dfrac{2005-2003}{2003.2005}=\)

\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2003}-\dfrac{1}{2005}=1-\dfrac{1}{2005}=\dfrac{2004}{2005}\)

\(\Rightarrow A=\dfrac{2004}{2005}:2=\dfrac{1002}{2005}\)

Lê Minh Quang
7 tháng 7 2023 lúc 8:48

Gọi tổng trên là A. Ta có

2A=\(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{2003.2005}\)

2A=\(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2003}-\dfrac{1}{2005}\)

2A=\(\dfrac{1}{1}-\dfrac{1}{2005}=\dfrac{2005}{2005}-\dfrac{1}{2005}=\dfrac{2004}{2005}\)

⇒ A= \(\dfrac{2004}{2005}:2=\dfrac{2004}{2005}.\dfrac{1}{2}=\dfrac{1002}{2005}\)

Vậy tổng trên bằng \(\dfrac{1002}{2005}\)

thiiee nè
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 1 2022 lúc 19:27

\(=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{2003\cdot2005}\right)\)

\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2003}-\dfrac{1}{2005}\right)\)

\(=\dfrac{1}{2}\cdot\dfrac{2004}{2005}=\dfrac{1002}{2005}\)

Phan Ngọc Huyền
Xem chi tiết
Phương An
11 tháng 7 2016 lúc 14:48

\(\frac{1}{1\times3}+\frac{1}{3\times5}+\frac{1}{5\times7}+...+\frac{1}{2001\times2003}+\frac{1}{2003\times2005}=\frac{1}{2}\times\left(\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+...+\frac{2}{2001\times2003}+\frac{2}{2003\times2005}\right)\)

\(=\frac{1}{2}\times\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2001}-\frac{1}{2003}+\frac{1}{2003}-\frac{1}{2005}\right)=\frac{1}{2}\times\left(1-\frac{1}{2005}\right)=\frac{1}{2}\times\frac{2004}{2005}=\frac{1002}{2005}\)

Chúc bạn học tốtok

 

Lưu Bảo Anh
Xem chi tiết
Hoàng Nguyễn
Xem chi tiết
Đặng Viết Thái
19 tháng 3 2019 lúc 20:06

\(=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+....+\frac{2}{2003.2005}\right)\)

=\(\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.....+\frac{1}{2003}-\frac{1}{2005}\right)\)
=\(\frac{1}{2}\left(1-\frac{1}{2005}\right)=\frac{1}{2}.\frac{2004}{2005}=\frac{1002}{2005}\)

\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+....+\frac{1}{2003.2005}=\)

\(=\frac{2}{2.1.3}+\frac{2}{2.3.5}+\frac{2}{2.5.7}+....+\frac{2}{2.2003.2005}\)

\(=\frac{1}{2}.\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+....+\frac{1}{2003.2005}\right)\)

\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{2003}-\frac{1}{2005}\right)\)

\(=\frac{1}{2}.\left(1-\frac{1}{2005}\right)\)

\(=\frac{1}{2}.\frac{2004}{2005}\)

\(=\frac{1002}{2005}\)

Chúc bạn học tốt nha!

Vương Hải Nam
19 tháng 3 2019 lúc 20:10

\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2003.2005}\)

\(\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2003.2005}\right)\)

\(\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2003}-\frac{1}{2005}\right)\)

\(\frac{1}{2}.\left(1-\frac{1}{2005}\right)\)

\(\frac{1}{2}.\frac{2004}{2005}\)

\(\frac{2004}{2.2005}=\frac{1002}{2005}\)