5/48-3/2
Biểu thức | Giá trị của biểu thức |
(40 – 20) : 5 | |
63 : ( 3x 3) | |
48 : (8 : 2) | |
48 : 2 : 2 | |
(50 + 5) : 5 | |
(17 + 3) x 4 |
Biểu thức | Giá trị của biểu thức |
(40 – 20) : 5 | 4 |
63 : ( 3x 3) | 7 |
48 : (8 : 2) | 12 |
48 : 2 : 2 | 12 |
(50 + 5) : 5 | 11 |
(17 + 3) x 4 | 80 |
có ai biết giải ko giải hộ mình mấy bài này với ( giải chi tiết hộ mình nhé)
1, \(2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}\)
2, \(\sqrt{6+2\sqrt{5-\sqrt{13+\sqrt{48}}}}\)
3, \(\sqrt{4+\sqrt{5\sqrt{3+}5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)
4, \(\sqrt{30-2\sqrt{16+6\sqrt{11+4\sqrt{4-2\sqrt{3}}}}}\)
5, \(\dfrac{\left(5\sqrt{3}+\sqrt{50}\right)\left(5-\sqrt{24}\right)}{\sqrt{75}-5\sqrt{2}}\)
6, \(\sqrt{4+\sqrt{8}.\sqrt{2+\sqrt{2}}}.\sqrt{2-\sqrt{2+\sqrt{2}}}\)
7, \(\sqrt{8\sqrt{3}-2\sqrt{25\sqrt{12}+4\sqrt{192}}}\)
\(\sqrt{13+\sqrt{48}}=\sqrt{13+\sqrt{4.12}}=\sqrt{13+2\sqrt{12}}=\sqrt{\left(\sqrt{12}+1\right)^2}\)
\(=\sqrt{12}+1=2\sqrt{3}+1\)
\(\Rightarrow\sqrt{5-\sqrt{13+\sqrt{48}}}=\sqrt{5-2\sqrt{3}-1}=\sqrt{4-2\sqrt{3}}=\sqrt{\left(\sqrt{3}-1\right)^2}\)
\(=\sqrt{3}-1\)
\(\Rightarrow\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}=\sqrt{3+\sqrt{3}-1}=\sqrt{2+\sqrt{3}}\)
\(\Rightarrow\sqrt{\dfrac{4+2\sqrt{3}}{2}}=\sqrt{\dfrac{\left(\sqrt{3}+1\right)^2}{2}}=\dfrac{\sqrt{3}+1}{\sqrt{2}}\)
\(\Rightarrow2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}==2.\dfrac{\sqrt{3}+1}{\sqrt{2}}=\sqrt{6}+\sqrt{2}\)
2) biến đổi khúc sau như câu 1:
\(\Rightarrow\sqrt{6+2\sqrt{5-\sqrt{13+\sqrt{48}}}}=\sqrt{6+2\left(\sqrt{3}-1\right)}=\sqrt{4+2\sqrt{3}}\)
\(=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)
4) Ta có: \(\sqrt{30-2\sqrt{16+6\sqrt{11+4\sqrt{4-2\sqrt{3}}}}}\)
\(=\sqrt{30-2\sqrt{16+6\sqrt{11+4\left(\sqrt{3}-1\right)}}}\)
\(=\sqrt{30-2\sqrt{16+6\sqrt{7+4\sqrt{3}}}}\)
\(=\sqrt{30-2\sqrt{16+6\left(2+\sqrt{3}\right)}}\)
\(=\sqrt{30-2\sqrt{28+6\sqrt{3}}}\)
\(=\sqrt{30-2\left(3\sqrt{3}+1\right)}\)
\(=\sqrt{28-6\sqrt{3}}=3\sqrt{3}-1\)
5) Ta có: \(\dfrac{\left(5\sqrt{3}+\sqrt{50}\right)\left(5-\sqrt{24}\right)}{\sqrt{75}-5\sqrt{2}}\)
\(=\dfrac{5\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)^2}{\sqrt{75}-5\sqrt{2}}\)
\(=\dfrac{5\left(\sqrt{3}-\sqrt{2}\right)}{5\left(\sqrt{3}-\sqrt{2}\right)}=1\)
Tính nhanh tong sau:A=2/2*3*4+2/3*4*5+.....+2/47*48*49+2/48*49*50
\(A=\frac{2}{2\cdot3\cdot4}+\frac{2}{3\cdot4\cdot5}+...+\frac{2}{47\cdot48\cdot49}+\frac{2}{48\cdot49\cdot50}\)
\(A=\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+\frac{1}{3\cdot4}-\frac{1}{4\cdot5}+...+\frac{1}{47\cdot48}-\frac{1}{48\cdot49}+\frac{1}{48\cdot49}-\frac{1}{49\cdot50}\)
\(A=\frac{1}{2\cdot3}-\frac{1}{49\cdot50}\)
\(A=\frac{1}{6}-\frac{1}{2450}\)
\(A=\frac{611}{3675}\)
mong giúp đc bn.thk cho mk
Bài 1: Thực hiện phép tính:
a, \(\left(\sqrt{24}-\sqrt{48}-\sqrt{6}\right)\sqrt{6}+12\sqrt{2}\)
b, \(\left(\sqrt{\dfrac{1}{5}}-\sqrt{\dfrac{16}{5}}+\sqrt{5}\right):\sqrt{20}\)
c, \(\sqrt{21+3\sqrt{48}}-\sqrt{21-3\sqrt{48}}\)
Bài 2: Giải các phương trình sau:
a, \(\dfrac{1}{3}\sqrt{x-2}-\dfrac{2}{3}\sqrt{9x-18}+6\sqrt{\dfrac{x-2}{81}}=-4\)
b, \(\sqrt{9x^2+12x +4}=4x\)
c, \(\sqrt{x-2\sqrt{x-1}}=\sqrt{x-1}\)
GIÚP MIK VỚIIII
Bài 2:
a)\(\dfrac{1}{3}\sqrt{x-2}-\dfrac{2}{3}\sqrt{9x-18}+6\sqrt{\dfrac{x-2}{81}}=-4\) (đk: \(x\ge2\))
\(\Leftrightarrow\dfrac{1}{3}\sqrt{x-2}-\dfrac{2}{3}\sqrt{9\left(x-2\right)}+\dfrac{6}{\sqrt{81}}\sqrt{x-2}=-4\)
\(\Leftrightarrow\dfrac{1}{3}\sqrt{x-2}-2\sqrt{x-2}+\dfrac{2}{3}\sqrt{x-2}=-4\)
\(\Leftrightarrow-\sqrt{x-2}=-4\) \(\Leftrightarrow x-2=16\)
\(\Leftrightarrow x=18\) (thỏa)
Vậy...
b)\(\sqrt{9x^2+12x+4}=4x\)(Đk:\(9x^2+12x+4\ge0\))
\(\Leftrightarrow\left\{{}\begin{matrix}4x\ge0\\9x^2+12x+4=16x^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\-7x^2+12x+4=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\-7x^2+14x-2x+4=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\left(x-2\right)\left(-7x-2\right)=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\left[{}\begin{matrix}x=2\\x=-\dfrac{2}{7}\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow x=2\) (tm đk)
Vậy...
c) \(\sqrt{x-2\sqrt{x-1}}=\sqrt{x-1}\) (đk: \(x\ge1\))
\(\Leftrightarrow x-2\sqrt{x-1}=x-1\)
\(\Leftrightarrow\sqrt{x-1}=\dfrac{1}{2}\) \(\Leftrightarrow x=\dfrac{5}{4}\) (tm)
Vậy...
Bài 1 : 48. 69 + 48 . 3322 : 48
Bài 2 : 2 . 52 - 36 : 32
Thực hiện phép tính:
a) 48 . 19 + 48 .115 + 134 .52
b) 5^6 : 5^4 + 2^3 . 2^2 - 1^2017
a) 48 . 19 + 48 .115 + 134 .52
= 48 . ( 19 + 115) + 134 . 52
= 48 . 134 + 134 . 52
= 134 . ( 48+52)
= 134 . 100
= 13400
b) 5^6 : 5^4 + 2^3 . 2^2 - 1^2017
= 5^2 + 2^5 - 1
= 25 + 32 - 1
= 56
câu b mình ko biết nên bạn thông cảm đen lại minh xe tăng bạn :
1 bộ váy:
hãy kb với mình nhé
a) \(48.19+48.115+134.52\)
\(=48.\left(19+115\right)+134.52\)
\(=48.134+134.52\)
\(=134.\left(48+52\right)\)
\(=134.100\)
\(=13400\)
b) \(5^6\div5^4+2^3.2^2-1^{2017}\)
\(=5^2+2^5-1\)
\(=25+32-1\)
\(=57-1\)
\(=56\)
1. 3 căn 2-4 căn 18+2 căn 32-căn 50
2. căn 50-căn 18+căn 200-căn 162
3. 5 căn 5+căn 20-3 căn 45
4. 5 căn 48-4 căn 27-2 căn 75+căn 108
5.1/2 căn 48-2 căn 75-căn 33/căn 11+5 căn 1 1/3
1) \(3\sqrt{2}-4\sqrt{18}+2\sqrt{32}-\sqrt{50}\)
\(=3\sqrt{2}-12\sqrt{2}+8\sqrt{2}-5\sqrt{2}\)
\(=-6\sqrt{2}\)
2) \(\sqrt{50}-\sqrt{18}+\sqrt{200}-\sqrt{162}\)
\(=5\sqrt{2}-3\sqrt{2}+10\sqrt{2}-9\sqrt{2}\)
\(=3\sqrt{2}\)
3) \(5\sqrt{5}+\sqrt{20}-3\sqrt{45}\)
\(=5\sqrt{5}+2\sqrt{5}-9\sqrt{5}\)
\(=-2\sqrt{5}\)
4) \(5\sqrt{48}-4\sqrt{27}-2\sqrt{75}+\sqrt{108}\)
\(=20\sqrt{3}-12\sqrt{3}-10\sqrt{3}+6\sqrt{3}\)
\(=4\sqrt{3}\)
5) \(\dfrac{1}{2}\sqrt{48}-2\sqrt{75}-\dfrac{\sqrt{33}}{\sqrt{11}}+5\sqrt{1\dfrac{1}{3}}\)
\(=2\sqrt{3}-10\sqrt{3}-\sqrt{3}+\dfrac{10}{3}\sqrt{3}\)
\(=-\dfrac{17}{3}\sqrt{3}\)
Tính S/P biết:
S = 1/2 + 1/3 + 1/4 + 1/5 + ... + 1/49 + 1/50
P = 1/49 + 2/48 + 3/47 + ... + 48/2 +49/1
So sánh tổng : S = 1/5 + 1/9 + 1/10 + 1/41 + 1/42 với 1/2
S=
=50/50+50/49+50/48+...+50/2
=50.(1/50+1/49+1/48+...+1/4+1/3+1/2)
=50
P=
P=(1/49+1)+(2/48+1)+...+(48/2+1)+1
P= 50/49+50/48+....+50/2+50/50=1
vậy s/p = 1/50
42 : 7 48 : 6 63 : 7 35 : 7
......... ........... .......... ...........
......... ........... .......... ...........
......... ........... .......... ...........
42 : 2 48 : 4 69 : 3 50 : 5
......... ........... .......... ...........
......... ........... .......... ...........
1)\(\sqrt{12}\)\(-\)\(\sqrt{27}\)\(+\)\(\sqrt{48}\)
2)(\(\sqrt{24}+\sqrt{20}-\sqrt{80}\))\(\div\)5
3)2\(\sqrt{27}-\sqrt{\dfrac{16}{3}}\)\(-\)\(\sqrt{48}-\)\(\sqrt{8\dfrac{1}{3}}\)
4) \(\dfrac{1}{\sqrt{5}-\sqrt{3}}\)\(-\)\(\dfrac{1}{\sqrt{5+\sqrt{3}}}\)
\(1,=2\sqrt{3}-3\sqrt{3}+4\sqrt{3}=3\sqrt{3}\\ 2,=\left(2\sqrt{6}+2\sqrt{5}-4\sqrt{5}\right):5=\dfrac{2\sqrt{6}}{5}-\dfrac{2\sqrt{5}}{5}\\ 3,=6\sqrt{3}-\dfrac{4\sqrt{3}}{3}-4\sqrt{3}-\dfrac{5\sqrt{3}}{3}=2\sqrt{3}-\dfrac{9\sqrt{3}}{3}=2\sqrt{3}-3\sqrt{3}=-\sqrt{3}\\ 4,Sửa:\dfrac{1}{\sqrt{5}-\sqrt{3}}-\dfrac{1}{\sqrt{5}+\sqrt{3}}\\ =\dfrac{\sqrt{5}+\sqrt{3}-\sqrt{5}+\sqrt{3}}{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}=\dfrac{2\sqrt{3}}{2}=\sqrt{3}\)
1) \(=2\sqrt{3}-3\sqrt{3}+4\sqrt{3}=3\sqrt{3}\)
2) \(=\left(2\sqrt{6}+2\sqrt{5}-4\sqrt{5}\right)=\dfrac{2\sqrt{6}}{5}+\dfrac{2\sqrt{5}}{5}-\dfrac{4\sqrt{5}}{5}\)
3) \(=6\sqrt{3}-\dfrac{4\sqrt{3}}{3}-4\sqrt{3}-\dfrac{5\sqrt{3}}{3}=2\sqrt{3}-3\sqrt{3}=-\sqrt{3}\)
4) \(=\dfrac{\sqrt{5}+\sqrt{3}-\sqrt{5}+\sqrt{3}}{5-3}=\dfrac{2\sqrt{3}}{2}=\sqrt{3}\)