so sánh A và B biết
A=\(\frac{2014+2015}{2014x2015}\) B=\(\frac{2015+2016}{2015x2016}\)
So sánh : \(A=\frac{2015^{2016}+1}{2015^{2015}+1}\) và \(B=\frac{2014^{2015}+1}{2014^{2014}+1}\)
A = \(\frac{2015^{2016}+1}{2015^{2015}+1}=\frac{2015^{2015}+1}{2015^{2015}+1}+\frac{2015}{2015^{2015}+1}=1+\frac{2015}{2015^{2015}+1}\)
B = \(\frac{2014^{2015}+1}{2014^{2014}+1}=\frac{2014^{2014}+1}{2014^{2014}+1}+\frac{2014}{2014^{2014}+1}=1+\frac{2014}{2014^{2014}+1}\)
Rồi bạn tự so sánh nha
a) So sánh \(\frac{2013}{2015}\) và \(\frac{2014}{2016}\)
b) So sánh \(\frac{2013+2014}{2014+2015}\) và \(\frac{2013}{2014}+\frac{2014}{2015}\)
a)\(\frac{2013}{2015}< \frac{2014}{2016}\)
b)\(\frac{2013+2014}{2014+2015}< \frac{2013}{2014}+\frac{2014}{2015}\)
ta có tính chất \(\frac{a}{b}\)>1 suy ra \(\frac{a.m}{b.m}\).........
So sánh A = \(\frac{2014}{2015}+\frac{2015}{2016}\)và B = \(\frac{2014+2015}{2015+2016}\). (2 cách làm)
phân tích B ta có
B = \(\frac{2014+2015}{2015+2016}=\frac{2014}{2015+2016}+\frac{2015}{2015+2016}\)
vì \(\frac{2014}{2015+2016}
A=2014/2015+2015/2016. B=(2014+2015)/(2015+2016)
A=1-1/2015+1-1/2016. B=1-2/4031
A=1+1-(2015+2016)/(2015x2016). So sánh
A=1+1-(4031)/(2015x2x1008). 1+1-[4031/(4030x1008)]>1;1-2/4031<1.
A=1+1-[4031/(4030x1008)]. Vậy 1+1-[4031/(4030x1008)]>1-2/4031.
=>A>B
Trước tiên để tính diện tích hình thang chúng ta có công thức Chiều cao nhân với trung bình cộng hai cạnh đáy.
S = h * (a+b)1/2
Trong đó
a: Cạnh đáy 1
b: Cạnh đáy 2
h: Chiều cao hạ từ cạnh đấy a xuống b hoặc ngược lại(khoảng cách giữa 2 cạnh đáy)
Ví dụ: giả sử ta có hình thang ABCD với các cạnh AB = 8, cạnh đáy CD = 13, chiều cao giữa 2 cạnh đáy là 7 thì chúng ta sẽ có phép tính diện tích hình thang là:
S(ABCD) = 7 * (8+13)/2 = 73.5
Tương tự với trường hợp hình thang vuông có chiều cao AC = 8, cạnh AB = 10.9, cạnh CD = 13, chúng ta cũng tính như sau:
S(ABCD) = AC * (AB + CD)/2 = 8 * (10.9 + 13)/2 = 95.6
Cho A : \(\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2014}\)
B :\(\frac{2014}{2015}+\frac{2015}{2016}+\frac{2016}{2017}\)
So sánh A và B
So sánh A=\(\frac{2015}{-2014}\) và B=\(\frac{-2016}{2015}\) ta được A.......B
1) CMR : A=(n+2015)(n+2016) + n2 + n chia hết cho 2 với n ϵ N
2) So sánh :
P = \(\frac{2013}{2014^{2013}}+\frac{2014}{2015^{2014}}+\frac{2015}{2016^{2015}}+\frac{2016}{2017^{2016}}\) và
Q = \(\frac{2014}{2017^{2016}}+\frac{2013}{2016^{2015}}+\frac{2016}{2015^{2014}}+\frac{2015}{2014^{2013}}\)
A = (n + 2015)(n + 2016) + n2 + n
= (n + 2015)(n + 2015 + 1) + n(n + 1)
Tích 2 số tự nhiên liên tiếp luôn chia hết cho 2
=> (n + 2015)(n + 2015 + 1) chia hết cho 2
n(n + 1) chia hết cho 2
=> (n + 2015)(n + 2015 + 1) + n(n + 1) chia hết cho 2
=> A chia hết cho 2 với mọi n \(\in\) N (đpcm)
So sánh:
\(\frac{2013}{2014}+\frac{2014}{2015}+\frac{2015}{2016}\)và\(\frac{2013+2014+2015}{2014+2015+2016}\)
So sánh:
A = \(\frac{2014x2015-1}{2014x2015}\) B = \(\frac{2015x2016-1}{2015x2016}\)
\(A=1-\frac{1}{2014x2015}\)
\(B=1-\frac{1}{2015x2016}\)
\(2014x2015< 2015x2016\Rightarrow\frac{1}{2014x2015}>\frac{1}{2015x2016}\Rightarrow A< B\)
2014x2015-1/2014x2015 và 2015x2016-1/2015x2016
2014x2015-1/2014x2015=2014x2015/2014x2015-1/2014x2015=1-1/2014x2015
2015x2016-1/2015x2016=2015x2016/2015x2016-1/2015x2016=1-1/2015x2016
=>1-1/2015x2016>1-1/2014x2015
=>2015x2016-1/2015x2016>2014x2015-1/2014x2015