cho tam giác ABC.Lấy D thuộc AB , E thuộc AC sao cho DE//BC. Qua C kẻ đường thẳng song song với AB ở F chứng minh
Cho tam giác ABC kẻ EF song song với BC (E thuộc AB, F thuộc AC) sao cho AE =CF. Qua E kẻ 1 đường thẳng song song với AC cắt BC tại D a, chứng minh AD là tia phân giác của góc A b, hãy dựng 1 đường thẳng MN song song với (M thuộc AB, N thuộc AC) sao cho BM =AN c, tam giác ABC phải có điều kiện gì để tứ giác MNDB là hình thoi
1. Cho tam giác ABC, điểm D thuộc cạnh BC. Qua D kẻ các đường thẳng song song AB và AC chúng cắt AB,AC theo thứ tự ở E và F. Chứng minh hệ thức: AE/AB+AF/AC=1
2. Cho tam giác ABC, 1 đường thẳng song song với BC cắt các cạnh AB, AC theo thứ tự ở D và E. Qua C kẻ đường thẳng song song với EB cắt AB ở F. Chứng minh hệ thức AB2=AD*AF
3.Cho tam giác ABC( AB<AC) đường phân giác AD. Qua trung điểm M của BC kẻ đường thẳng song song với AD cắt AC và AB theo thứ tự ở E và K. Chứng minh rằng:
a. AE=AK
b. DK=CE
Cho tam giác ABC cân tại A. Lấy điểm E thuộc cạnh AB , lấy điểm D thuộc tia đối của tia CA sao cho: AE + AD = AB + AC. Kẻ đường thẳng qua C và song song với DE cắt đường thẳng qua E và song song với DC tại F. Chứng minh rằng: a)C/m tam giác EFC = tam giác CDE . b) C/m tam giác FEB cân
Cho tam giác ABC. M là trung điểm của BC, lấy điểm E thuộc MC. Qua E kẻ đường thẳng song song với AC cắt AB ở D và cắt AM ở K. Qua E kẻ đường thẳng song song với AB cắt AC tại F. Chứng minh CF= DK
Qua K vẽ đường thẳng // với AB cắt AC tại H.
=> AHKD là hình bình hành => DK = AH (1)
Gọi giao điểm của AK và DH là O. Vì AHKD là HBH => DO = OH
Xét 3 đường thẳng MA, CA, BA đồng quy tại A cắt 2 đường thẳng DH và BC ta được: DO/OH = BM/MC = 1
=> DH // BC (định lí chùm đường thẳng đồng quy đảo)
Xét ∆ ADH và ∆ FEC có:
AD = EF ( t/c đoạn chắn) ; DH = EC (t/c đoạn chắn) ; ^ADH = ^FEC => ∆ ADH = ∆ FEC (c-g-c)
=> AH = CF (2)
Từ (1) và (2) => CF = DK (đpcm)
GL
Do EF//AB⇒\(\frac{CF}{CA}=\frac{EF}{AB}\)⇒\(\frac{CF}{EF}=\frac{AC}{AB}\)(1)
Dựng MG//AC và MM là trung điểm cạnh BC
⇒GM là đường trung bình ΔABC
=⇒G là trung điểm cạnh AB ⇒AG=BG
Do DK//GM⇒\(\frac{AD}{AG}=\frac{DK}{GM}\)⇒\(\frac{AD}{BG}=\frac{DK}{GM}\)
=> \(\frac{DK}{AD}=\frac{GM}{BG}=\frac{\frac{AC}{2}}{\frac{AB}{2}}=\frac{AC}{AB}\left(2\right)\)
Từ (1) và (2)\(\Rightarrow\frac{CF}{EF}=\frac{DK}{AD}\)
Mà tứ giác ADEF là hình bình hành (vì EF//AD và DE//AF) nên AD=EF
=> CF=DK (đpcm)
Nguồn: thuynga
Bạn dựa vào hình rồi tự làm ra
Mình kh biết c/m ^^
Bnaj thông cảm ạ
#hoc_tot#
cho tam giác ABC vuông tại A,đường cao AH,lấy D thuộc BC sao cho BD=BA.Kẻ DE vuông góc vs AC(E thuộc Ac
a) Chứng minh tam giác ADE=tam giác ADH?
b) Chứng minh AH+BC>AB+AC
c) Qua E kẻ đường thẳng song song với BC cắt HA tại I,cắt AB tại F,trên tia đói của tia HA lấy P sao cho HP=AI.Chứng minh góc BPF=gócCPE?
cho tam giác ABC vuông tại A,đường cao AH,lấy D thuộc BC sao cho BD=BA.Kẻ DE vuông góc vs AC(E thuộc Ac
a) Chứng minh tam giác ADE=tam giác ADH?
b) Chứng minh AH+BC>AB+AC
c) Qua E kẻ đường thẳng song song với BC cắt HA tại I,cắt AB tại F,trên tia đói của tia HA lấy P sao cho HP=AI.Chứng minh góc BPF=gócCPE?
cho tam giác ABC vuông tại A,đường cao AH,lấy D thuộc BC sao cho BD=BA.Kẻ DE vuông góc vs AC(E thuộc Ac
a) Chứng minh tam giác ADE=tam giác ADH?
b) Chứng minh AH+BC>AB+AC
c) Qua E kẻ đường thẳng song song với BC cắt HA tại I,cắt AB tại F,trên tia đói của tia HA lấy P sao cho HP=AI.Chứng minh góc BPF=gócCPE?
cho tam giác ABC vuông tại A,đường cao AH,lấy D thuộc BC sao cho BD=BA.Kẻ DE vuông góc vs AC(E thuộc Ac
a) Chứng minh tam giác ADE=tam giác ADH?
b) Chứng minh AH+BC>AB+AC
c) Qua E kẻ đường thẳng song song với BC cắt HA tại I,cắt AB tại F,trên tia đói của tia HA lấy P sao cho HP=AI.Chứng minh góc BPF=gócCPE?
Cứng đờ tay luôn rồi, khổ quá:((
a) Xét \(\Delta DBF\) và \(\Delta FED:\)
DF:cạnh chung
\(\widehat{BDF}=\widehat{EFD}\)(AB//EF)
\(\widehat{BFD}=\widehat{EDF}\)(DE//BC)
=> \(\Delta BDF=\Delta EFD\left(g-c-g\right)\)
b) (Ở lớp 8 thì sé có cái đường trung bình ý bạn, nó sẽ có tính chất luôn, nhưng lớp 7 chưa học đành làm theo lớp 7 vậy)
Ta có: \(\widehat{DAE}+\widehat{AED}+\widehat{EDA}=180^o\) (Tổng 3 góc trong 1 tam giác)
Lại có: \(\widehat{AED}+\widehat{DEF}+\widehat{FEC}=180^o\)
Mà \(\widehat{DEF}=\widehat{EDA}\)(AB//EF)
=>\(\widehat{DAE}=\widehat{FEC}\)
Xét \(\Delta DAE\) và \(\Delta FEC:\)
DA=FE(=BD)
\(\widehat{DAE}=\widehat{EFC}\left(=\widehat{DBF}\right)\)
\(\widehat{DAE}=\widehat{FEC}\) (cmt)
=>\(\Delta DAE=\Delta FEC\left(g-c-g\right)\)
=> DE=FC(2 cạnh t/ứ)
=> Đpcm