Chứng minh rằng:S=1^4+2^4+3^4+....+2020^4 không là số chính phương.
Chứng minh rằng:S=14+24+34+....+20204 không là số chính phương.
em
lớp 6
not
lớp 8
hết
HT
Toán nâng cao của lớp 6 có cái này nè , em có làm một bài nhưng mà không biết làm bài này ==" thông cẻm . Nhục cái mặt quá :)
cho P=1*2*3+2*3*4+...+2018*2019*2020 chứng minh rằng 4P+1 là số chính phương
chứng minh rằng:s=1/2+1/3+1/4+....+n không thể làm 1 số nguyên
1. Chứng minh tổng các số tự nhiên liên tiếp từ 1 đến 2005 không phải là số chính phương.
2. Chứng minh số : n = 20044 + 20043 + 20042 + 23 không là số chính phương.
3.Chứng minh số : n = 44 + 4444 + 444444 + 44444444 + 15 không là số chính phương.
4.Chứng minh số 4014025 không là số chính phương.
1.Chứng minh tích của 4 số tự nhiên liên tiếp không là số chính phương
2.Chứng minh tích của 4 số tự nhiên liên tiếp cộng 1 là số chính phương
3.Chứng minh tích của 4 số tự nhiên chẵn liên tiếp cộng 16 là số chính phương
4.Chứng minh tích của 4 số tự nhiên lẻ liên tiếp cộng 16 là số chính phương
2.
Gọi x;x+1;x+2;x+3 là 4 số tự nhiên liên tiếp ( x\(\in\) N)
Ta có : x (x+1) (x+2 ) (x+3 ) +1
=( x2 + 3x ) (x2 + 2x + x +2 ) +1
= ( x2 + 3x ) (x2 +3x + 2 ) +1 (*)
Đặt t = x2 + 3x thì (* ) = t ( t+2 ) + 1= t2 + 2t +1 = (t+1)2 = (x2 + 3x + 1 )2
=> x (x+1) (x+2 ) (x+3 ) +1 là số chính phương
hay tích 4 số tự nhiên liên tiếp cộng 1 là số chính phương
Gọi x;x+1;x+2;x+3 là 4 số tự nhiên liên tiếp ( x
∈
∈ N)
Ta có : x (x+1) (x+2 ) (x+3 ) +1
=( x2 + 3x ) (x2 + 2x + x +2 ) +1
= ( x2 + 3x ) (x2 +3x + 2 ) +1 (*)
Đặt t = x2 + 3x thì (* ) = t ( t+2 ) + 1= t2 + 2t +1 = (t+1)2 = (x2 + 3x + 1 )2
=> x (x+1) (x+2 ) (x+3 ) +1 là số chính phương
hay tích 4 số tự nhiên liên tiếp cộng 1 là số chính phương
Bài 1. Chứng minh rằng tổng của 4 số chính phương liên tiếp không thể là một số chính phương.
Bài 2. Chứng minh rằng tổng của 5 số chính phương liên tiếp không thể là một số chính phương.
Bài 3. Cho bốn chữ số 0,2,3,4. Tìm số chính phương có 4 chữ số được tạo bởi cả 4 chữ số trên.
Bài 4. Tìm số nguyên tố p thỏa mãn
a) p 2 + 62 cũng là số nguyên tố.
b) p 2 + 14 và p 2 + 6 cũng là số nguyên tố.
Bài 4:
a: TH1: p=2
\(p^2+62=2^2+62=4+62=66\) ⋮3
=>Loại
TH2: p=3
\(p^2+62=3^2+62\)
=9+62
=71(nhận)
TH3: p=3k+1
\(p^2+62\)
\(=\left(3k+1\right)^2+62\)
\(=9k^2+6k+1+62=9k^2+6k+63=3\left(3k^2+2k+21\right)\) ⋮3
=>Loại
TH4: p=3k+2
\(p^2+62=\left(3k+2\right)^2+62\)
\(=9k^2+12k+4+62\)
\(=9k^2+12k+66=3\left(3k^2+4k+22\right)\) ⋮3
=>Loại
b: TH1: p=2
\(p^2+6=2^2+6=4+6=10\) ⋮5
=>Loại
TH2: p=3
\(p^2+6=3^2+6=9+6=15\) ⋮5
=>Loại
TH3: p=3k+1
\(p^2+14=\left(3k+1\right)^2+14\)
\(=9k^2+6k+1+14\)
\(=9k^2+6k+15=3\left(3k^2+2k+5\right)\) ⋮3
=>Loại
TH4: p=3k+2
\(p^2+14=\left(3k+2\right)^2+14\)
\(=9k^2+12k+4+14=9k^2+12k+18\)
\(=3\left(3k^2+4k+6\right)\) ⋮3
=>Loại
Cho A=2^2+2^3+2^4+...+2^20 .Chứng minh rằng A+4 không là số chính phương
Ta có A = 22 + 23 + 24 + ... + 220
2A = 23 + 24 + 25 + ... + 221
2A - A = ( 23 + 24 + 25 + ... + 221 ) - ( 22 + 23 + 24 + ... + 220 )
⇒ A + 4 = 221 - 22 + 4 = 221 - 4 + 4 = ( 24 )5 . 2 = ( ...6 )5 . 2 = ( ...6 ) . 2 = ( ...2 )
Vì không có số chính phương nào có tận cùng là chữ số 2 nên A + 4 không phải là số chính phương
Cho A=1-3/4+(3/4)^2-(3/4)^3+(3/4)^4-...-(3/4)^2019+(3/4)^2020 a)Tính A b)Chứng minh A không là số nguyên
a: \(\dfrac{3}{4}A=\dfrac{3}{4}-\left(\dfrac{3}{4}\right)^2+...+\left(\dfrac{3}{4}\right)^{2021}\)
=>\(\dfrac{7}{4}\cdot A=\left(\dfrac{3}{4}\right)^{2021}+1\)
=>\(A\cdot\dfrac{7}{4}=\dfrac{3^{2021}+4^{2021}}{4^{2021}}\)
=>\(A=\dfrac{3^{2021}+4^{2021}}{4^{2020}\cdot7}\)
b: Vì 3^2021+4^2021 ko chia hết cho 4^2020*7 nên A ko là số nguyên
a: \(\frac{3}{4} A = \frac{3}{4} - \left(\left(\right. \frac{3}{4} \left.\right)\right)^{2} + . . . + \left(\left(\right. \frac{3}{4} \left.\right)\right)^{2021}\)
=>\(\frac{7}{4} \cdot A = \left(\left(\right. \frac{3}{4} \left.\right)\right)^{2021} + 1\)
=>\(A \cdot \frac{7}{4} = \frac{3^{2021} + 4^{2021}}{4^{2021}}\)
=>\(A = \frac{3^{2021} + 4^{2021}}{4^{2020} \cdot 7}\)
b: Vì 3^2021+4^2021 ko chia hết cho 4^2020*7 nên A ko là số nguyên
Chứng minh rằng S=1+3^1+3^2+3^4+...+3^30 không phải là số chính phương