C/m bất dẳng thức sau:
\((a^2 +b^2)(a^2+1) \geq 4a^2b\) luôn dúng với mọi a,b
C/m bất dẳng thức:
\( ( a^2 + b^2 ) (a^2 + 1) \geq 4 a^2 b \)
luôn đúng với mọi a, b.
C/m bất đẳng thức sau:
\(( a^2 + b^2 ) (a^2 + 1) \geq 4 a^2 b\)
luôn đúng với mọi a, b.
cái này đặt a= 2^-x,b=2^-y,c=2^-z
==>a+b+c=1
áp dụng cosi bình thường,vì a,b,c vai trò ngag nhau,đấu = khí a=b=c=1/3,dựa vào điểm rơi để áp dụng cosi thôi
C/m bất đẳng thức sau:
\(( a^2 + b^2 )(a^2 + 1) \geq 4 a^2 b\)
luôn đúng với mọi a, b.
Vì a>0; b>0 nên a + b \geq 4ab1+ab4ab1+ab
\Leftrightarrow (a + b)(1 + ab)\geq 4ab
\Leftrightarrow a + b + a^2b+ab^2\geq 4ab
\Leftrightarrow a + b + a^b + ab^2 - 4ab\geq 0
\Leftrightarrow (a^2b - 2ab + b) + (ab^2 - 2ab +a) \geq 0
\Leftrightarrow b(a^2 -2a + 1) + a(b^2 - 2B + 1)\geq 0
\Leftrightarrow b(a-1)^2 + a(b-1)^2\geq 0
\Rightarrow Bất đẳng thức đúng\Rightarrow đpcm.
cm bất dẳng thức : a^2+b^2+c^2> hoặc bằng a(b+c)với mọi a,b,c
chứng minh các bất đẳng thức:
1/ 4a(a+b)(a+1)(a+b+1)+b^2>=0
2/ 4a^2b^2>(a^2+b^2-c^2)^2 với a, b, c là độ dài ba cạnh của 1 tam giác
3/a/b+b/a>=2 với a^b>0
Bài 1: chỉ ra chỗ sai của một trong hai vế và sửa lại cho đúng các hằng dẳng thức
a) x^2 - 2xy + 4y^2 = (x - 2y)^2
b) a^2 + 24ab + b^2 = (4a + 3b)^2
c) 9x^2 + 6xy + y^2 = (3x - y)^2
d) a^3 - 8a^2b + 6ab^2 - 8b^3 = (a - 2b)^3
chứng minh các bất đẳng thức sau
a/ \(\left(a^2+b^2\right)\left(a^2+1\right)\ge4a^2b\) với mọi a,b
b/ \(\frac{1}{a+3b}+\frac{1}{b+3c}+\frac{1}{c+3a}\ge\frac{1}{a+2b+c}+\frac{1}{b+2c+a}+\frac{1}{c+2a+b}\) với mọi a,b,c>0
a) Áp dụng bất đẳng thức AM-GM :
\(\left(a^2+b^2\right)\left(a^2+1\right)\ge2\sqrt{a^2b^2}.2\sqrt{a^2}\ge2ab.2a=4a^2b\)
b) Áp dụng bất đẳng thức :\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\forall x;y>0\)
\(\frac{1}{a+3b}+\frac{1}{b+2c+a}\ge\frac{4}{a+3b+b+2c+a}=\frac{4}{2a+4b+2c}=\frac{2}{a+2b+c}\)
Tương tự \(\hept{\begin{cases}\frac{1}{b+3c}+\frac{1}{c+2a+b}\ge\frac{2}{b+2c+a}\\\frac{1}{c+3a}+\frac{1}{a+2b+c}\ge\frac{2}{b+2a+c}\end{cases}}\)
Cộng vế với vế ta được : \(VT+VP\ge2VP\Rightarrow VT\ge VP\)(đpcm)
chứng tỏ rằng với bất kỳ giá trị nào của m thì các bất đẳng thức sau luôn
luôn đúng
a. 10 m 2 – 5m +1 $\geq$ m 2 + m
b. m 2 - m $\leq$ 50m 2 – 15m + 1