tìm số nguyên n sao cho n^2+3 chia hết cho n+1
Bài 1.Tìm số nguyên n sao cho n+6 chia hết cho n+2
Bài 2. Tìm số nguyên n sao cho 3n+2 chia hết cho n+1
Bài 3. Tìm số nguyên x biết (x-2).(x+3)<0
Bài 4. Tìm số nguyên x biết (4-2x).(x+3)>0
a) Tìm số nguyên n sao cho : n + 2 chia hết cho n - 3
b) Tìm tất cả các số nguyên n biết : (6n + 1) chia hết cho (3n - 1)
a) ta có: n+2 chia hết cho n-3
=>(n-3)+5 chia hết cho n-3
Mà n-3 chia hết cho n-3
=>5 chia hết cho n-3
=> n-3 thuộc Ư(5)={1;5;-1;-5}
=> n thuộc {4;8;2;-2}
b) Ta có: 6n+1 chia hết cho 3n-1
=>(6n-2)+2+1 chia hết cho 3n-1
=>2(3n-1) +3 chia hết cho 3n-1
Mà 2(3n-1) chia hết cho 3n-1
=> 3 chia hết cho 3n-1
=> 3n-1 thuộc Ư(3)={1;3;-1;-3}
=> 3n thuộc {2;4;0;-2}
=>n thuộc {2/3 ; 4/3 ; 0 ; -2/3}
Mà n thuộc Z
=>n=0
tìm số nguyên n sao cho n +5 chia hết cho n-2.
tìm số nguyên n sao cho 2n +1 chia hết cho n -5
n + 5 chia hết cho n - 2
n - 2 + 7 chia hết cho n - 2
Mà n - 2 chia hết cho n - 2
=> 7 chia hết cho n - 2
n - 2 thuộc Ư(7) = {-7 ; -1 ; 1 ; 7}
n - 2 = -7 => n = -5
n - 2 =-1 => N = 1
n - 2 = 1 => n = 3
n - 2 = 7 => n = 9
Vậy n thuộc {-5 ; 1 ; 3 ; 9}
2n + 1 chia hết cho n - 5
2n - 10 + 11 chia hết cho n - 5
Mà 2n + 10 chia hết cho n- 5
=> 11 chia hết cho n - 5
n - 5 thuộc Ư(11) = {-11 ; -1 ; 1 ; 11}
n - 5 = -11 => n =-6
n - 5 = -1 => n = 4
n - 5 = 1 => n = 6
n - 5 =11 => n = 16
Vậy n thuộc {-6 ; 4 ; 6 ; 16}
p/s : kham khảo
Ta có:
n+5 = n - 2 + 7
mà n - 2 chia hết cho n - 2
nên suy ra 7 phải chia hết cho n - 2
suy ra n-2 thuộc ước của 7
xét các trường hợp
giải các bài toán sau :
a) tìm số nguyên n sao cho n+2 chia hết cho n-3
b) tìm các giá trị nguyên của x để x-3 là ước của 13
c) tìm các giá trị nguyên của x để x-2 là ước của 111
d) tìm các số nguyên n sao cho 5 chia hết cho n+ 15
e) tìm các số nguyên n sao cho 3 chia hết cho n+ 24
f) tìm các số nguyên sao cho : ( 4x + 3 ) chia hết ( x-2 )
giúp mình với !!!
a)n=5
b)X=16;-10;2;4
c)x=113;39;5;3;1;-1;-35;-109
Answer:
a) \(\left(n+2\right)⋮\left(n-3\right)\)
\(\Rightarrow\left(n-3+5\right)⋮\left(n-3\right)\)
\(\Rightarrow5⋮\left(n-3\right)\)
\(\Rightarrow n-3\) là ước của \(5\), ta có:
Trường hợp 1: \(n-3=-1\Rightarrow n=2\)
Trường hợp 2: \(n-3=1\Rightarrow n=4\)
Trường hợp 3: \(n-3=5\Rightarrow n=8\)
Trường hợp 4: \(n-3=-5\Rightarrow n=-2\)
b) Ta có: \(x-3\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\)
\(\Rightarrow x\in\left\{4;16;2;-10\right\}\)
Vậy để \(x-3\inƯ\left(13\right)\Rightarrow x\in\left\{4;16;2;-10\right\}\)
c) Ta có: \(x-2\inƯ\left(111\right)\)
\(\Rightarrow x-2\in\left\{\pm111;\pm37;\pm3;\pm1\right\}\)
\(\Rightarrow x\in\left\{-99;-35;1;1;3;5;39;113\right\}\)
d) \(5⋮n+15\Rightarrow n+15\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Trường hợp 1: \(n+15=-1\Rightarrow n=-16\)
Trường hợp 2: \(n+15=1\Rightarrow n=-14\)
Trường hợp 3: \(n+15=5\Rightarrow n=-10\)
Trường hợp 4: \(n+15=-5\Rightarrow n=-20\)
Vậy \(n\in\left\{-14;-16;-10;-20\right\}\)
e) \(3⋮n+24\)
\(\Rightarrow n+24\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow n\in\left\{-23;-25;-21;-27\right\}\)
f) Ta có: \(x-2⋮x-2\)
\(\Rightarrow4\left(x-2\right)⋮x-2\)
\(\Rightarrow4x-8⋮x-2\)
\(\Rightarrow\left(4x+3\right)-\left(4x-8\right)⋮x-2\)
\(\Rightarrow11⋮x-2\)
\(\Rightarrow x-2\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
\(\Rightarrow x\in\left\{3;13;1;-9\right\}\)
4x-3⋮x-2
--> 4(x-2)+5⋮x-2
--> 5⋮x-2 (vì 4(x-2)⋮ x-2)
-->x-2⋴Ư(5) =⩲1;⩲5
ta có bảng
x-2 | 1 | -1 | 5 | -5 |
x | 3 | 1 | 7 | -3 |
vậy x=1;3;7;-3 thì 4x-3⫶x-2
1, tìm số nguyên n biết
a, n+3 chia hết cho n-1
b, 2n-1 chia hết cho n+2
2, tìm số nguyên n sao cho
a, 3n+2 chia hết cho n-1
b, 3n+24 chia hết cho n-4
c, n^2+5 chia hết cho n+1
bài 1 tìm a để a+6 chia hết cho a+3
bài 2 tìm số nguyên n sao cho n-3 chia hết cho n-1
a + 6 ⋮ a + 3 (đk a ≠0; a \(\in\) Z)
a + 3 + 3 ⋮ a + 3
3 ⋮ a + 3
a + 3 \(\in\) Ư(3) = {- 3; -1; 1; 3}
a \(\in\) {-6; -4; -2; 0}
Bài 2:
n - 3 ⋮ n - 1 (đk n \(\ne\) 1)
n - 1 - 2 ⋮ n - 1
2 ⋮ n - 1
n - 1 \(\in\) Ư(2) = {-2; -1; 1; 2}
n \(\in\) {-1; 0; 2; 3}
Bài 1: a+6 \(⋮\) a+3
Ta có: a+6 = (a+3)+3
\(\Rightarrow\)(a+3)+3 ⋮ a+3
mà a+3 ⋮ a+3
⇒ 3 ⋮ a+3
⇒a+3 ϵ Ư(3)
Ư(3)={1;3}
a = 0 (vì a ϵ N)
Bài 2: n-3 ⋮ n-1
Ta có: n-3 = (n-1)-2
⇒(n-1)-2 ⋮ n-1
mà n-1 ⋮ n-1
⇒2 ⋮ n-1
⇒n-1 ϵ Ư(2)
Ư(2)={1;2}
⇒n={2;3}
1/ Tìm số nguyên n sao cho n + 2 chia hết cho n -3
2/ Tìm tất cả các số nguyên a biết: (6a +1) chia hết cho ( 3a -1)
3/ tìm 2 số nguyên a , b biết :a > 0 và a. (b - 2) =3
3/ => a(b-2) thuộc Ư(3) = {1;3;-1;-3}
Mà a > 0
=> a thuộc {1;3}
Ta có bảng kết quả:
a | 1 | 3 |
---|---|---|
b-2 | 3 | 1 |
b | 5 | 3 |
tìm số nguyên n sao cho
n^2 +3n -13 chia hết cho n+3
n^2 +3 chia hết cho n-1
\(n^2+3⋮n-1\)
\(\Rightarrow n\left(n-1\right)+n+3⋮n-1\)
\(\Rightarrow n+3⋮n-1\)
\(\Rightarrow\left(n-1\right)+4⋮n-1\)
\(\Rightarrow4⋮n-1\)
\(\Rightarrow n-1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
\(\Rightarrow n\in\left\{2;0;3;-1;5;-3\right\}\)
Vậy.......................................
Tìm số nguyên n sao cho n^2 + 3 chia hết cho n + 1
Giải:
Ta có: \(\dfrac{n^2+3}{n+1}\)
\(=\dfrac{n^2+n-n-1+4}{n+1}\)
\(=\dfrac{n\left(n+1\right)-\left(n+1\right)+4}{n+1}\)
\(=\dfrac{n\left(n+1\right)}{n+1}-\dfrac{n+1}{n+1}+\dfrac{4}{n+1}=n-1+\dfrac{4}{n+1}\)
Để \(n^2+3⋮x+1\) thì \(4⋮n+1\)
\(\Rightarrow n+1\inƯ\left(4\right)=\left\{\pm1;\pm2\pm4\right\}\) (đk: \(n\ne-1\))
\(\Rightarrow n\in\left\{-5;-3;-2;0;1;3\right\}\) (t/m)
Vậy ...
#CHÚC BẠN HỌC TỐT#
tìm số nguyên dương n sao cho:
a) (n+1)(n+2) chia hết cho n;
b) (n+2)(n+3) chia hết cho n;
c) (n-1)(n+3) chia hết cho n
a, Bài giải
Ta có : \(\frac{\left(n+1\right)\left(n+2\right)}{n}=\frac{n\left(n+1\right)+2\left(n+1\right)}{n}=\frac{n^2+n+2n+2}{n}=\frac{n\left(n+1+2\right)+2}{n}\)
\(=\frac{n\left(n+1+2\right)}{n}+\frac{2}{n}=n+1+2+\frac{2}{n}\)
\(\left(n+1\right)\left(n+2\right)\text{ }⋮\text{ }n\text{ khi }2\text{ }⋮\text{ }n\)
\(\Rightarrow\text{ }n\inƯ\left(2\right)=\left\{\pm1\text{ ; }\pm2\right\}\)
b, Bài giải
Ta có : \(\frac{\left(n+2\right)\left(n+3\right)}{n}=\frac{n\left(n+2\right)+3\left(n+2\right)}{n}=\frac{n^2+2n+3n+2}{n}=\frac{n\left(n+2+3\right)+2}{n}\)
\(=\frac{n\left(n+2+3\right)}{n}+\frac{2}{n}=n+2+3+\frac{2}{n}\)
\(\left(n+2\right)\left(n+3\right)\text{ }⋮\text{ }n\text{ khi }2\text{ }⋮\text{ }n\)
\(\Rightarrow\text{ }n\inƯ\left(2\right)=\left\{\pm1\text{ ; }\pm2\right\}\)