Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Legend
Xem chi tiết
phạm đình trung
Xem chi tiết
Nguyễn Viết Phong
Xem chi tiết
ironman123
Xem chi tiết
Link Pro
Xem chi tiết
Yuu Shinn
2 tháng 3 2016 lúc 12:42

\(A=\frac{25^{28}+25^{24}+25^{20}+...+25^4+1}{25^{30}+25^{28}+25^{26}+...+25^2+1}=25^{30}+25^{26}+25^{22}+25^{18}+25^{14}+25^{10}+25^6+25^2\)

Dii thánh thiện
Xem chi tiết
dream XD
Xem chi tiết
Akai Haruma
13 tháng 3 2021 lúc 13:32

Lời giải:

Xét tử số:

$\text{TS}=1+25^4+25^8+...+25^{28}$

$25^4.\text{TS}=25^4+25^8+...+25^{32}$

$\Rightarrow \text{TS}(25^4-1)=25^{32}-1$

$\text{TS}=\frac{25^{32}-1}{25^4-1}$

Xét mẫu số:

$\text{MS}=1+25^2+..+25^{30}$

$25^2.\text{MS}=25^2+25^4+...+25^{32}$

$\Rightarrow \text{MS}(25^2-1)=25^{32}-1$

$\Rightarrow \text{MS}=\frac{25^{32}-1}{25^2-1}$

Do đó:
$A=\frac{25^{32}-1}{25^4-1}:\frac{25^{32}-1}{25^2-1}=\frac{25^2-1}{25^4-1}$

$=\frac{25^2-1}{(25^2-1)(25^2+1)}=\frac{1}{25^2+1}$

Ngô Hải Nam
Xem chi tiết
dream XD
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 2 2021 lúc 13:16

a) Ta có: \(\dfrac{25^{28}+25^{24}+25^{20}+...+25^4+1}{25^{30}+25^{28}+...+25^2+1}\)

\(=\dfrac{25^{24}\left(25^4+1\right)+25^{16}\left(25^4+1\right)+...+\left(25^4+1\right)}{25^{28}\left(25^2+1\right)+25^{24}\left(25^2+1\right)+...+\left(25^2+1\right)}\)

\(=\dfrac{\left(25^4+1\right)\left(25^{24}+25^{16}+25^8+1\right)}{\left(25^2+1\right)\left(25^{28}+25^{24}+...+1\right)}\)

\(=\dfrac{\left(25^4+1\right)\cdot\left[25^{16}\left(25^8+1\right)+\left(25^8+1\right)\right]}{\left(25^2+1\right)\left[25^{24}\left(25^4+1\right)+25^{16}\left(25^4+1\right)+25^8\left(25^4+1\right)+\left(25^4+1\right)\right]}\)

\(=\dfrac{\left(25^4+1\right)\left(25^8+1\right)\left(25^{16}+1\right)}{\left(25^2+1\right)\left(25^4+1\right)\left(25^{24}+25^{16}+25^8+1\right)}\)

\(=\dfrac{\left(25^8+1\right)\left(25^{16}+1\right)}{\left(25^2+1\right)\left[25^{16}\left(25^8+1\right)+\left(25^8+1\right)\right]}\)

\(=\dfrac{\left(25^8+1\right)\left(25^{16}+1\right)}{\left(25^2+1\right)\left(25^8+1\right)\left(25^{16}+1\right)}\)

\(=\dfrac{1}{25^2+1}=\dfrac{1}{626}\)