tim MIN A = x^2+y^2-xy-x+y+1
Cho x,y la ca so duong tm x+y nho hon hoặc bang 1 tim Min A = 1/x^2+y^2 + 2/xy +4xy
cho x,y,z la cac so thuc duong thoa man x+y+z=1 tim min A=x^3/(x^2+xy+y^2)+y^3/(y^2+yz+z^2)+z^3/(z^2+zx+x^2)
√xy + √yz + √zx =1 ;x,y,z>0
tim min A = X^2/(X+y) + y^2/(y+z) + z^2/z+x
ai lam dk mk tick cho
Áp dụng BĐT AM-GM ta có:
\(\hept{\begin{cases}\sqrt{xy}\le\frac{x+y}{2}\\\sqrt{yz}\le\frac{y+z}{2}\\\sqrt{xz}\le\frac{x+z}{2}\end{cases}}\). Cộng theo vế ta có:
\(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}=1\le\frac{x+y+y+z+x+z}{2}=\frac{2\left(x+y+z\right)}{2}=x+y+z\)
Do đó ta có: \(x+y+z\ge1\).Áp dụng BĐT Cauchy-Schwarz dạng Engel ta cũng có:
\(A\ge\frac{\left(x+y+z\right)^2}{x+y+y+z+x+z}=\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{1}{2}\)
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)
giai ho voi
tim min cua
\(A=\frac{\left(x+y+1\right)^2}{xy+x+y}+\frac{xy+x+y}{\left(x+y+1\right)^2}\) (voi x,y la so thuc duong)
Đặt \(\frac{\left(x+y+1\right)^2}{xy+x+y}=a\) ( ĐK a > 0 )
=> A = a + 1/a
(*) \(\left(x+y+1\right)^2\ge3\left(xy+x+y\right)\)( Nhân 2 vế với hai sau đưa về hằng đẳng thức )
=> \(\frac{\left(x+y+1\right)^2}{xy+x+y}\ge3\Leftrightarrow a\ge3\)
TA có \(A=a+\frac{1}{a}=\frac{a}{9}+\frac{1}{a}+\frac{8a}{9}\ge2\sqrt{\frac{a}{9}\cdot\frac{1}{a}}+\frac{8\cdot3}{9}=\frac{2}{3}+\frac{8}{3}=\frac{10}{3}\)
Vậy GTNN của A là 10/3 tại x = y= 1
Tim MIN : A=x^2+y^2+xy-5x-4y+2002
1)Tim MAX cua A= (6x^2-2x+1)/ x^2
2)tim MIN va MAX C= (3-4x)/(X^2+1)
3) Tim MIN va MAX P = x^2+y^2
biet giua x va y co moi quan he nhu sau : 5x^2+8xy+5y^2=36
4)tim MAX Q = -x^2-y^2+xy+2x+2y
1) Cho x,y>0 và x+y=< 1 Tìm min A = \(\frac{1}{x^2+y^2}+\frac{1}{xy}\)
2) Cho x >= 3y và x;y > 0 Tìm min A = \(\frac{x^2+y^2}{xy}\)
3) Cho x >= 4y và x;y > 0 Tìm min A = xy/(x^2 +y^2)
\(1,A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)
\(\ge\frac{4}{\left(x+y^2\right)}+\frac{1}{\frac{\left(x+y\right)^2}{2}}\ge\frac{4}{1}+\frac{2}{1}=6\)
Dấu "=" <=> x= y = 1/2
\(2,A=\frac{x^2+y^2}{xy}=\frac{x}{y}+\frac{y}{x}=\left(\frac{x}{9y}+\frac{y}{x}\right)+\frac{8x}{9y}\ge2\sqrt{\frac{x}{9y}.\frac{y}{x}}+\frac{8.3y}{9y}\)
\(=2\sqrt{\frac{1}{9}}+\frac{8.3}{9}=\frac{10}{3}\)
Dấu "=" <=> x = 3y
cho x,y,z là các số thực thỏa mãn x^2 + y^2 + z^2 =1.
a, Tim min và max của xy + yz - xz
b,CMR ko tồn tại bộ số hữu tỉ (x,y,z) để đạt được giá trị lớn nhất và nhỏ nhất của xy+yz-xz
tim min,max
P=\(\dfrac{x^2-3x+2}{x^2+1}\)
Q=\(\dfrac{x^2-xy+2y^2}{x^2-xy+y^2}\)
Bài 1 dùng tam thức bậc 2, bài 2 chia cả tử và mẫu cho y2, đặt x/y=t rồi làm tương tự bài 1
Đặt \(\dfrac{x}{y}=t\)
\(Q=\dfrac{\dfrac{x^2-xy+2y^2}{y^2}}{\dfrac{x^2-xy+y^2}{y^2}}=\dfrac{\dfrac{x^2}{y^2}-\dfrac{x}{y}+2}{\dfrac{x^2}{y^2}-\dfrac{x}{y}+1}=\dfrac{t^2-t+2}{t^2-t+1}\)
\(\Rightarrow Qt^2-Qt+Q=t^2-t+2\Leftrightarrow t^2\left(Q-1\right)-t\left(Q-1\right)+Q-2=0\)
\(\Delta=\left(Q-1\right)^2-4\left(Q-1\right)\left(Q-2\right)\ge0\)
\(\Rightarrow1\le Q\le\dfrac{7}{3}\)