Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
khanh trancong
Xem chi tiết
long Bui
Xem chi tiết
Trương Mỹ Hạnh
Xem chi tiết
Thắng Nguyễn
16 tháng 2 2017 lúc 16:34

Áp dụng BĐT AM-GM ta có:

\(\hept{\begin{cases}\sqrt{xy}\le\frac{x+y}{2}\\\sqrt{yz}\le\frac{y+z}{2}\\\sqrt{xz}\le\frac{x+z}{2}\end{cases}}\). Cộng theo vế ta có:

\(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}=1\le\frac{x+y+y+z+x+z}{2}=\frac{2\left(x+y+z\right)}{2}=x+y+z\)

Do đó ta có: \(x+y+z\ge1\).Áp dụng BĐT Cauchy-Schwarz dạng Engel ta cũng có:

\(A\ge\frac{\left(x+y+z\right)^2}{x+y+y+z+x+z}=\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{1}{2}\)

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)

le quang huy
Xem chi tiết
Trần Đức Thắng
28 tháng 1 2016 lúc 21:47

Đặt \(\frac{\left(x+y+1\right)^2}{xy+x+y}=a\) ( ĐK a > 0 )

=> A = a + 1/a 

(*)  \(\left(x+y+1\right)^2\ge3\left(xy+x+y\right)\)( Nhân 2 vế với hai sau đưa về hằng đẳng thức ) 

=> \(\frac{\left(x+y+1\right)^2}{xy+x+y}\ge3\Leftrightarrow a\ge3\)

TA có \(A=a+\frac{1}{a}=\frac{a}{9}+\frac{1}{a}+\frac{8a}{9}\ge2\sqrt{\frac{a}{9}\cdot\frac{1}{a}}+\frac{8\cdot3}{9}=\frac{2}{3}+\frac{8}{3}=\frac{10}{3}\)

Vậy GTNN của A là 10/3 tại x = y= 1 

do thi thuy
Xem chi tiết
hyun mau
Xem chi tiết
An Vy
Xem chi tiết
Incursion_03
20 tháng 7 2019 lúc 12:08

\(1,A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)

                                             \(\ge\frac{4}{\left(x+y^2\right)}+\frac{1}{\frac{\left(x+y\right)^2}{2}}\ge\frac{4}{1}+\frac{2}{1}=6\)

Dấu "=" <=> x= y = 1/2

Incursion_03
20 tháng 7 2019 lúc 12:15

\(2,A=\frac{x^2+y^2}{xy}=\frac{x}{y}+\frac{y}{x}=\left(\frac{x}{9y}+\frac{y}{x}\right)+\frac{8x}{9y}\ge2\sqrt{\frac{x}{9y}.\frac{y}{x}}+\frac{8.3y}{9y}\)

                                                                                                  \(=2\sqrt{\frac{1}{9}}+\frac{8.3}{9}=\frac{10}{3}\)

Dấu "=" <=> x = 3y

Incursion_03
20 tháng 7 2019 lúc 12:15

bài 3 min hay max ?

Quang Đẹp Trai
Xem chi tiết
nguyen thi minh ngoc
Xem chi tiết
Nguyễn Quang Định
21 tháng 7 2018 lúc 8:30

Bài 1 dùng tam thức bậc 2, bài 2 chia cả tử và mẫu cho y2, đặt x/y=t rồi làm tương tự bài 1

Nguyễn Quang Định
22 tháng 7 2018 lúc 9:32

Đặt \(\dfrac{x}{y}=t\)

\(Q=\dfrac{\dfrac{x^2-xy+2y^2}{y^2}}{\dfrac{x^2-xy+y^2}{y^2}}=\dfrac{\dfrac{x^2}{y^2}-\dfrac{x}{y}+2}{\dfrac{x^2}{y^2}-\dfrac{x}{y}+1}=\dfrac{t^2-t+2}{t^2-t+1}\)

\(\Rightarrow Qt^2-Qt+Q=t^2-t+2\Leftrightarrow t^2\left(Q-1\right)-t\left(Q-1\right)+Q-2=0\)

\(\Delta=\left(Q-1\right)^2-4\left(Q-1\right)\left(Q-2\right)\ge0\)

\(\Rightarrow1\le Q\le\dfrac{7}{3}\)