Bài 1 dùng tam thức bậc 2, bài 2 chia cả tử và mẫu cho y2, đặt x/y=t rồi làm tương tự bài 1
Đặt \(\dfrac{x}{y}=t\)
\(Q=\dfrac{\dfrac{x^2-xy+2y^2}{y^2}}{\dfrac{x^2-xy+y^2}{y^2}}=\dfrac{\dfrac{x^2}{y^2}-\dfrac{x}{y}+2}{\dfrac{x^2}{y^2}-\dfrac{x}{y}+1}=\dfrac{t^2-t+2}{t^2-t+1}\)
\(\Rightarrow Qt^2-Qt+Q=t^2-t+2\Leftrightarrow t^2\left(Q-1\right)-t\left(Q-1\right)+Q-2=0\)
\(\Delta=\left(Q-1\right)^2-4\left(Q-1\right)\left(Q-2\right)\ge0\)
\(\Rightarrow1\le Q\le\dfrac{7}{3}\)