Cho tam giác ABC, M là trung điểm của cạnh BC. Chứng minh AB+AC > 2AM
Cho tam giác ABC, M là trung điểm BC. Chứng minh AB+AC>2AM
trên tia đối của MA lấy D sao cho MA = MD
tam giác ABM = DCM (c.g.c)
=>DC=AB
Xét tam giác ACD có:
DC+AC > AD (bất đẳng thức tam giác)
mà AD=MA+MD(cmt)
DC=AB(cmt)
=>AB+AC>2AM(ĐPCM)
Cho tam giác ABC. Gọi M là trung điểm BC. Chứng minh rằng:
AB + AC > 2AM
Trên tia đối của tia MA lấy E sao cho AM=ME=1/2.AE
Nối C với E. Xét tam giác AMB và tam giác CME có :
AM = ME ( cách lấy )
AMB = CME ( đối đỉnh )
BM = CM ( gt )
=> Tam giác AMB = CME ( c.g.c )
=> AB = CE ( 2 cạnh tương ứng )
Xét tam giác AEC có :
AC + CE > AE ( BĐT tam giác )
=> AC + AB > 2AM ( ĐPCM)
Bạn tham khảo tại link này
https://h.vn/hoi-dap/question/219851.html
Câu hỏi của Hà Kiều Anh - Toán lớp 7 | Học trực tuyến
Bài 3. Cho tam giác ABC, M là trung điểm BC. Trên tia đối của MA lấy điểm D sao cho
MD=MA.
a) Chứng minh rằng
AB + AC − BC
2
< AM
b) Chứng minh rằng CD=AB, từ đó suy ra 2AM < AC + AB .
Bài 3. Cho tam giác ABC, M là trung điểm BC. Trên tia đối của MA lấy điểm D sao cho
MD=MA.
a) Chứng minh rằng
AB + AC − BC
2
< AM
b) Chứng minh rằng CD=AB, từ đó suy ra 2AM < AC + AB
Cho tam giác ABC có BC=2AB . Gọi N là trung điểm của BC và M là trung điểm của BN . Chứng minh rằng AC=2AM
Gọi K là trung điểm của AC
Lúc đó: NK là đường trung bình của \(\Delta ABC\Rightarrow NK//BC,NK=\frac{1}{2}BC\)
Từ giả thiết suy ra \(AB=BN=CN\Rightarrow BM=\frac{1}{2}AB\)
Xét \(\Delta AMB\)và \(\Delta CKN\)có:
AB = CN \(\left(=\frac{1}{2}BC\right)\)
\(\widehat{ABM}=\widehat{CNK}\)(\(AB//NK\), đồng vị)
BM = NK \(\left(=\frac{1}{2}AB\right)\)
Suy ra \(\Delta AMB\)\(=\Delta CKN\left(c-g-c\right)\)
\(\Rightarrow AM=CK\)(hai cạnh tương ứng)
Mà \(CK=\frac{1}{2}AC\Rightarrow AM=\frac{1}{2}AC\)
hay AC = 2AM (đpcm)
Bài giải đây. Link ảnh (nếu lỗi): https://i.imgur.com/eTSzE2I.jpg
cho tam giác ABC vuông cân tại A. O là trung điểm của BC. D là trung điểm của AB. E là trung điểm của AC. lấy M nằm trong góc DOE. chứng minh MB+MC>2AM
Cho tam giác ABC, M là trung điểm cạnh BC. Vẽ BD vuông góc AM tại D, CE vuông góc AM tại E. Chứng minh AB+AC >2AM
cứu với mọi người ơi
cho tam giác abc có ab= ac , trên cạnh ab lấy điểm m , trên cạnh ac lấy điểm n sao cho am=an. gọi h là trung điểm của bc
a, chứng minh góc abh = ach
b, gọi e là giao điểm của ah và nm . chứng minh tam giác ame = tam giác ane
c, chứng minh mn // bc
a) Xét ΔABC có AB=AC(gt)
nên ΔABC cân tại A(Định nghĩa tam giác cân)
Suy ra: \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy)
hay \(\widehat{ABH}=\widehat{ACH}\)
b) Xét ΔABH và ΔACH có
AB=AC(ΔABC cân tại A)
AH chung
BH=CH(H là trung điểm của BC)
Do đó: ΔABH=ΔACH(c-c-c)
Suy ra: \(\widehat{BAH}=\widehat{CAH}\)(hai góc tương ứng)
hay \(\widehat{MAE}=\widehat{NAE}\)
Xét ΔAME và ΔANE có
AM=AN(gt)
\(\widehat{MAE}=\widehat{NAE}\)(cmt)
AE chung
Do đó: ΔAME=ΔANE(c-g-c)
c) Ta có: ΔAME=ΔANE(cmt)
nên \(\widehat{AEM}=\widehat{AEN}\)(hai góc tương ứng)
mà \(\widehat{AEM}+\widehat{AEN}=180^0\)(hai góc so le trong)
nên \(\widehat{AEM}=\widehat{AEN}=\dfrac{180^0}{2}=90^0\)
Suy ra: AH⊥MN tại E(1)
Ta có: ΔABH=ΔACH(cmt)
nên \(\widehat{AHB}=\widehat{AHC}\)(hai góc tương ứng)
mà \(\widehat{AHB}+\widehat{AHC}=180^0\)(hai góc kề bù)
nên \(\widehat{AHB}=\widehat{AHC}=\dfrac{180^0}{2}=90^0\)
Suy ra: AH⊥BC tại H(2)
Từ (1) và (2) suy ra MN//BC(Đpcm)
Cho tam giác ABC, M là trung điểm BC. Chứng minh: AB2 + AC2 =2AM2 BC2/2
-Kẻ BH vuông góc với AM; CK vuông góc với AM(H,K thuộc AM). => BHCK là hình bình hành
=> BH= CK; M là trung điểm của BC nên cũng là trung điểm của HK.
-Áp dụng định lý Pytago vào tam giác AHB vuông tại H; tam giác BHM vuông tại H; tam giác AKC vuông tại K, ta có: AH^2+ BH^2=AB^2.
BH^2+HM^2=BM^2.
AK^2+KC^2=AC^2.
-Từ các điều ở trên ta có : BH^2+HM^2= (BC/2)^2.
=> 4.BH^2+4.HM^2 =BC^2.
=> 2.BH^2= (BC^2)/2 -2.HM^2.
=> 2.BH^2+4.HM^2= 2.HM^2+ (BC^2)/2.
=> 2.BH^2+2.AH^2 +4.HM^2+ 4.AH.HM= 2.AH^2+ 2.HM^2+ 4.AH.HM+ (BC/2)^2.
=> BH^2+CK^2+ AH^2+( AH^2+4.HM^2+ 4.AH.HM) =2.(AH^2+ HM^2+2.AH.HM) +(BC/2)^2.
=> BH^2+ AH^2+ CK^2+(AH^2+ HK^2+ 2.AH.HK) = 2.AM^2+ (BC/2)^2.
=> AB^2+ (CK^2+ AK^2)= 2.AM^2 + (BC/2)^2.
=> AB^2+AC^2= 2.AM^2 + (BC/2)^2 (đpcm).
Tham khảo nha bn
KẺ BH VUÔNG GÓC VỚI AM ; CK VUÔNG GÓC VỚI AM ( H.K THUỘC AM ) = > BHCK LÀ HINHFD BÌNH HÀNH = > BH = CK ; M ; LÀ TRUNG ĐIỂM CỦA BC NÊN CŨNG LÀ TRUNG ĐIỂM CỦA HK . - ÁP DỤNG ĐỊNH LÝ PYTAGO VÀO TAM GIÁC AHB VUÔNG TẠI H ; TAM GIÁC BHM VUÔNG TẠI H ; TAM GIÁC AKC VUÔNG TẠI K