cho x+y=a+b và x^2+y^2=a^2+b^2.Chứng minh: x^n+y^n=a^n+b^n
Cho x + y= a+b và \(x^2+y^2=a^2+b^2\). Chứng minh với mọi số nguyên dương \(x^n+y^n=a^n+b^n\)
Ta có :
\(x^2+y^2=a^2+b^2\)
\(\Leftrightarrow x^2-a^2=b^2-y^2\)
\(\Leftrightarrow\left(x-a\right)\left(x+a\right)=\left(b-y\right)\left(b+y\right)\)
Mà \(x+y=a+b\)
\(\Leftrightarrow x-a=b-y\)
+ Nếu \(x-a=b-y=0\Leftrightarrow x=a;b=y\) (1)
\(\Leftrightarrow\left(x-a\right)\left(x+a\right)=\left(b-y\right)\left(b+y\right)\)
\(\Leftrightarrow0=0\left(TM\right)\)
+ Nếu \(x-a=b-y\ne0\Leftrightarrow x+a=b+y\)
\(\Leftrightarrow x-y=b-a\)
Lại có : \(x+y=a+b\)
\(\Leftrightarrow\hept{\begin{cases}2x=2b\\-2y=-2a\end{cases}}\)Cái trên là cộng vế với vế 2 ptr, cái dưới là trừ vế cho vế của 2 ptr nhé )
\(\Leftrightarrow\hept{\begin{cases}x=b\\y=a\end{cases}}\) (2)
Từ (1) và (2) \(\Leftrightarrow x=a;y=b\)hoặc \(x=b;y=a\)
\(\Rightarrow x^n+y^n=a^n+b^n\)(đpcm)
cho x+y=a+b;x2+y2=a2+b2.chứng minh xn+yn=an+bn
1. Cho a;b thuộc tập hợp số nguyên. Chứng minh ( a-b ) và ( b-a ) là hai số đối
2. Chứng tỏ rằng:
a, (x-y) + (m-n) = (x+m) - (y+n)
b, (x-y) - (m-n) = (x+n) - (y+m)
1. ta có: (a-b) + (b-a) = a-b+b-a = 0
Vậy (a-b) và (b-a) là hai số đối nhau
2.
a, (x-y) + (m-n) = x-y +m - n = x + m - y - n = (x+m) - (y+n)
b, (x-y) - (m-n) = x-y -m +n = x+n -y -m = (x+n) -(y+m)
A + B = a - b + b - a
A + B= a + (-b) + b + (-a)
A + B= a + (-a) + b + (-b)
A + B = 0
Vì A + B = 0 mà hai số đối có tổng = 0 nên a - b và b - a là hai số đối nhau.
a) (x - y) + (m - n)= x - y + m - n
= x + (-y) + m + (-n)
= (x + m) + (-y) + (-n)
= (x + m) +[- (y + n)]
= (x + m) - (y + n)
b) (x - y) - (m - n)= x - y - m + n
= x + (-y) + (-m) + n
= (x + n) + (-y) + (-m)
= (x + n) + [- (y + m)]
= (x + n) - (y + m)
A + B = a - b + b - a
A + B= a + (-b) + b + (-a)
A + B= a + (-a) + b + (-b)
A + B = 0
Vì A + B = 0 mà hai số đối có tổng = 0 nên a - b và b - a là hai số đối nhau.
a) (x - y) + (m - n)= x - y + m - n
= x + (-y) + m + (-n)
= (x + m) + (-y) + (-n)
= (x + m) +[- (y + n)]
= (x + m) - (y + n)
b) (x - y) - (m - n)= x - y - m + n
= x + (-y) + (-m) + n
= (x + n) + (-y) + (-m)
= (x + n) + [- (y + m)]
= (x + n) - (y + m)
Cho x+y=a+b và x2 +y2 = a2 +b2. Chứng minh rằng với mọi số nguyên dương n ta có xn+yn=an+bn
Chứng minh 11n+2 +122n+1 chia hết cho 133
Cho x+y=a+b;x2+y2=a2+b2.Chứng minh rằng xn+yn=an+bn với n thuộc N*
\(x+y=a+b\)(1)
\(\Leftrightarrow\left(x+y\right)^3=\left(a+b\right)^3\)
\(\Leftrightarrow x^3+y^3+3xy\left(x+y\right)=a^3+b^3+3ab\left(a+b\right)\)(2)
Ta thấy: \(x+y=a+b\Leftrightarrow\left(x+y\right)^2=\left(a+b\right)^2\)
\(\Leftrightarrow x^2+2xy+y^2=a^2+2ab+b^2\). Mà \(x^2+y^2=a^2+b^2\)
\(\Rightarrow xy=ab\Rightarrow3xy=3ab\)(3)
Từ (1); (2) và (3) \(\Rightarrow x^3+y^3=a^3+b^3\)
Lại có: \(\left(x^2+y^2\right)^2=\left(a^2+b^2\right)^2\Leftrightarrow x^4+2x^2y^2+y^4=a^4+2a^2b^2+b^4\)
Vì \(xy=ab\Rightarrow2x^2y^2=2a^2b^2\Rightarrow x^4+y^4=a^4+b^4\)
Sau đó sử dụng phép quy nạp là xong.
cho x+y=a+b và x2+y2=a2+b2. chứng minh xn+yn=an+bn
Giúp mình tí nha các bạn, mình noob lắm...
Từ \(x+y=a+b\Rightarrow x-a=b-y\)(1)
Từ \(x^2+y^2=a^2+b^2\Rightarrow x^2-a^2=b^2-y^2\)
\(\Rightarrow\left(x-a\right)\left(x+a\right)=\left(b-y\right)\left(b+y\right)\Rightarrow x+a=b+y\)(2)
Xét x-a=b-y=0 thì hẳn nhiên \(x^n+y^n=a^n+b^n\)(*)
Xét x-a=b-y\(\ne0\)
Cộng (1) và (2) ta có x=b
Trừ (1) và (2) theo vế ta có a=y
Do đó \(x^n+y^n=a^n+b^n\)(**)
Từ(*) và (**) suy ra đpcm
Cho x + y = a + b và x2 + y2 = a2 + b2
Chứng minh xn + yn = an + bn với n thuộc N, n >= 1
a²+b²=x²+y²
<=>(a²-x²)+(b²-y²)=0
<=>(a-x)(a+x)+(b-y)(b+y)=0 (1)
a+b=x+y
<=>a-x=y-b,thay vào (1) ta có :
(y-b)(a+x)+(b-y)(b+y)=0
<=>(y-b)[(a+x)-(b+y)]=0
*TH1:y-b=0<=>y=b và x=a=>xn+yn=an+bn.
*TH2: a+x-(b+y)=0<=>a+x=b+y<=>
{x-y=b-a <=>{x=b
{x+y=a+b {a=y
=> xn+yn=an+bn.
Vậy xn+yn=an+bn
a²+b²=x²+y²
<=>(a²-x²)+(b²-y²)=0
<=>(a-x)(a+x)+(b-y)(b+y)=0 (1)
a+b=x+y
<=>a-x=y-b,thay vào (1) ta có :
(y-b)(a+x)+(b-y)(b+y)=0
<=>(y-b)[(a+x)-(b+y)]=0
*TH1:y-b=0<=>y=b và x=a=>xn+yn=an+bn.
*TH2: a+x-(b+y)=0<=>a+x=b+y<=>
{x-y=b-a <=>{x=b
{x+y=a+b {a=y
=> xn+yn=an+bn.
Vậy xn+yn=an+bn
a²+b²=x²+y²
<=>(a²-x²)+(b²-y²)=0
<=>(a-x)(a+x)+(b-y)(b+y)=0 (1)
a+b=x+y
<=>a-x=y-b,thay vào (1) ta có :
(y-b)(a+x)+(b-y)(b+y)=0
<=>(y-b)[(a+x)-(b+y)]=0
*TH1:y-b=0<=>y=b và x=a=>xn+yn=an+bn.
*TH2: a+x-(b+y)=0<=>a+x=b+y<=>
{x-y=b-a <=>{x=b
{x+y=a+b {a=y
=> xn+yn=an+bn.
Vậy xn+yn=an+bn
cho x+y=a+b và \(x^2+y^2=a^2+b^2\)
Chứng minh rằng \(x^n+y^n=a^n+y^n\)với \(n\in N,n\ge1\)
+) Ta có : \(x^2+y^2=a^2+b^2\)
\(\Leftrightarrow x^2-a^2=b^2-y^2\)
\(\Leftrightarrow\left(x-a\right)\left(x+a\right)=\left(b-y\right)\left(b+y\right)\) ( * )
+) Ta có : \(x+y=a+b\)
Thay \(x-a=b-y\) vào ( * ) ta được :
\(\left(b-y\right)\left(x+a\right)=\left(b-y\right)\left(b+y\right)\)
\(\Leftrightarrow\left(b-y\right)\left(x+a\right)-\left(b-y\right)\left(b+y\right)=0\)
\(\Leftrightarrow\left(b-y\right)\left[\left(x+a\right)-\left(b+y\right)\right]=0\)
\(\Leftrightarrow\left(b-y\right)\left(x+a-b-y\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}b-y=0\\x+a-b-y=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}b=y\\x+a=b+y\end{cases}}\)
TH1 :\(b=y\)
\(\Rightarrow b-y=0\)
\(\Rightarrow x-a=0\)
\(\Rightarrow x=a\)
\(\Rightarrow x^n+y^n=a^n+b^n\) ( 1 )
TH2 : \(x+a=b+y\)
Mà \(x-a=b-y\)
\(\Rightarrow x+a+x-a=b+y+b-y\)
\(\Rightarrow2x=2b\)
\(\Rightarrow x=b\)
\(\Rightarrow a=y\)
\(\Rightarrow x^n+y^n=a^n+b^n\) ( 2 )
Từ ( 1 ) ; ( 2 )
\(\Rightarrow\) đpcm
Bài 1:Cho x+y = a+b và x2 + y2 = a2 +b2
Chứng minh xn + yn =an + bn
( n \(\in\) N, n > 1)
Bài 2: Chứng minh
Nếu 2(x+y)=5(y+z)=3(z+x) thì \(\dfrac{x-y}{4}=\dfrac{y-z}{5}\)
( b+c,a+c,a+b \(\ne\) 0)