tìm x nguyên để A đặt giá trị nguyên
A = x + 2 / x^2 - x +3
Tìm x nguyên để mỗi phân số sau nhận giá trị nguyên
a) 26/x+3
b)x+6/x+1
c)x-2/x+3
d)2x+1/x-3
a) Để phân số \(\dfrac{26}{x+3}\) nguyên thì \(26⋮x+3\)
\(\Leftrightarrow x+3\in\left\{1;-1;2;-2;13;-13;26;-26\right\}\)
hay \(x\in\left\{-2-4;-1;-5;10;-16;23;-29\right\}\)
b) Để phân số \(\dfrac{x+6}{x+1}\) nguyên thì \(x+6⋮x+1\)
\(\Leftrightarrow5⋮x+1\)
\(\Leftrightarrow x+1\in\left\{1;-1;5;-5\right\}\)
hay \(x\in\left\{0;-2;4;-6\right\}\)
c) Để phân số \(\dfrac{x-2}{x+3}\) nguyên thì \(x-2⋮x+3\)
\(\Leftrightarrow-5⋮x+3\)
\(\Leftrightarrow x+3\in\left\{1;-1;5;-5\right\}\)
hay \(x\in\left\{-2;-4;2;-8\right\}\)
d) Để phân số \(\dfrac{2x+1}{x-3}\) nguyên thì \(2x+1⋮x-3\)
\(\Leftrightarrow7⋮x-3\)
\(\Leftrightarrow x-3\in\left\{1;-1;7;-7\right\}\)
hay \(x\in\left\{4;2;10;-4\right\}\)
Giải:
a) \(\dfrac{26}{x+3}\)
Để \(\dfrac{26}{x+3}\) là số nguyên thì \(26⋮x+3\)
\(26⋮x+3\)
\(\Rightarrow x+3\inƯ\left(26\right)=\left\{\pm1;\pm2;\pm13;\pm26\right\}\)
Ta có bảng giá trị:
x+3 | -26 | -13 | -2 | -1 | 1 | 2 | 13 | 26 |
x | -29 | -16 | -5 | -4 | -2 | -1 | 10 | 23 |
Vậy \(x\in\left\{-29;-16;-5;-4;-2;-1;10;23\right\}\)
b) \(\dfrac{x+6}{x+1}\)
Để \(\dfrac{x+6}{x+1}\) là số nguyên thì \(x+6⋮x+1\)
\(x+6⋮x+1\)
\(\Rightarrow x+1+5⋮x+1\)
\(\Rightarrow5⋮x+1\)
\(\Rightarrow x+1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Ta có bảng giá trị:
x+1 | -5 | -1 | 1 | 5 |
x | -6 | -2 | 0 | 4 |
Vậy \(x\in\left\{-6;-2;0;4\right\}\)
c) \(\dfrac{x-2}{x+3}\)
Để \(\dfrac{x-2}{x+3}\) là số nguyên thì \(x-2⋮x+3\)
\(x-2⋮x+3\)
\(\Rightarrow x+3-5⋮x+3\)
\(\Rightarrow5⋮x+3\)
\(\Rightarrow x+3\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Ta có bảng giá trị:
x+3 | -5 | -1 | 1 | 5 |
x | -8 | -4 | -2 | 2 |
Vậy \(x\in\left\{-8;-4;-2;2\right\}\)
d) \(\dfrac{2x+1}{x-3}\)
Để \(\dfrac{2x+1}{x-3}\) là số nguyên thì \(2x+1⋮x-3\)
\(2x+1⋮x-3\)
\(\Rightarrow2x-6+7⋮x-3\)
\(\Rightarrow7⋮x-3\)
\(\Rightarrow x-3\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
Ta có bảng giá trị:
x-3 | -7 | -1 | 1 | 7 |
x | -4 | 2 | 4 | 10 |
Vậy \(x\in\left\{-4;2;4;10\right\}\)
Chúc bạn học tốt!
tìm các số nguyên x để biểu thức sau có giá trị nguyên
a, A = \(\dfrac{7}{\sqrt{x}}\)
b, B = \(\dfrac{3}{\sqrt{x-1}}\)
c, C = \(\dfrac{2}{\sqrt{x-3}}\)
a: ĐKXĐ: x>0
Để A là số nguyên thì \(7⋮\sqrt{x}\)
=>\(\sqrt{x}\in\left\{1;7\right\}\)
=>\(x\in\left\{1;49\right\}\)
b: ĐKXĐ: x>1
Để B là số nguyên thì \(3⋮\sqrt{x-1}\)
=>\(\sqrt{x-1}\in\left\{1;3\right\}\)
=>\(x-1\in\left\{1;9\right\}\)
=>\(x\in\left\{2;10\right\}\)
c: ĐKXĐ: x>3
Để C là số nguyên thì \(2⋮\sqrt{x-3}\)
=>\(\sqrt{x-3}\in\left\{1;2\right\}\)
=>\(x-3\in\left\{1;4\right\}\)
=>\(x\in\left\{4;7\right\}\)
Tìm x nguyên để các biểu thức sau có giá trị nguyên
a) \(\dfrac{2}{x-1}\) b)\(\dfrac{x-2}{x-1}\)
Lời giải:
a. Với $x$ nguyên, để biểu thức có giá trị nguyên thì $x-1$ là ước của $2$
$\Rightarrow x-1\in\left\{1; -1; 2;-2\right\}$
$\Rightarrow x\in\left\{2; 0; 3; -1\right\}$
b.
$\frac{x-2}{x-1}=\frac{(x-1)-1}{x-1}=1-\frac{1}{x-1}$
Để biểu thức nhận giá trị nguyên thì $\frac{1}{x-1}$ nguyên
$\Rightarrow x-1$ là ước của $1$
$\Rightarrow x-1\in\left\{1; -1\right\}$
$\Rightarrow x\in\left\{2; 0\right\}$
tìm x thuộc Z để A có giá trị nguyên
A=\(\dfrac{\sqrt{x}+2}{\sqrt{x}-3}\)
ĐKXĐ: x>=0 và x<>9
Để A là số nguyên thì \(\sqrt{x}+2⋮\sqrt{x}-3\)
=>\(\sqrt{x}-3+5⋮\sqrt{x}-3\)
=>\(5⋮\sqrt{x}-3\)
=>\(\sqrt{x}-3\in\left\{1;-1;5;-5\right\}\)
=>\(\sqrt{x}\in\left\{4;2;8;-2\right\}\)
=>\(\sqrt{x}\in\left\{2;4;8\right\}\)
=>\(x\in\left\{4;16;64\right\}\)
Cho A = \(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\) có bao nhiêu giá trị nguyên của x để A nhận giá trị nguyên
A. 9
B. 25
C. 9;25
D. 2
Tìm số nguyên n để các biểu thức dưới đây có giá trị nguyên
a, \(\dfrac{\sqrt{x}-3}{\sqrt{x}-8}\)
b,\(\dfrac{\sqrt{x}+5}{\sqrt{x}-2}\)
\(c,\dfrac{2\sqrt{x}+8}{\sqrt{x}+3}\)
\(a,=\dfrac{\sqrt{x}-8+5}{\sqrt{x}-8}=1+\dfrac{5}{\sqrt{x}-8}\in Z\\ \Leftrightarrow\sqrt{x}-8\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\\ \Leftrightarrow\sqrt{x}\in\left\{3;7;9;13\right\}\\ \Leftrightarrow x\in\left\{9;49;81;169\right\}\left(tm\right)\\ b,=\dfrac{\sqrt{x}-2+7}{\sqrt{x}-2}=1+\dfrac{7}{\sqrt{x}-2}\in Z\\ \Leftrightarrow\sqrt{x}-2\inƯ\left(7\right)=\left\{-1;1;7\right\}\left(\sqrt{x}-2>-2\right)\\ \Leftrightarrow\sqrt{x}\in\left\{1;3;9\right\}\\ \Leftrightarrow x\in\left\{1;9;81\right\}\\ c,=\dfrac{2\left(\sqrt{x}+3\right)+2}{\sqrt{x}+3}=2+\dfrac{2}{\sqrt{x}+3}\in Z\\ \Leftrightarrow\sqrt{x}+3\inƯ\left(2\right)=\varnothing\left(\sqrt{x}+3>3\right)\\ \Leftrightarrow x\in\varnothing\)
Tìm giá trị nguyên của biến số x để BT đã cho cũng có giá trị nguyên
a) \(\dfrac{2x^3+x^2+2x+2}{2x+1}\)
b)\(\dfrac{3x^3-7x^2+11x-1}{3x-1}\)
c)\(\dfrac{x^4-16}{x^4-4x^3+8x^2-16x+16}\)
a:
ĐKXĐ: x<>-1/2
Để \(\dfrac{2x^3+x^2+2x+2}{2x+1}\in Z\) thì
\(2x^3+x^2+2x+1+1⋮2x+1\)
=>\(2x+1\inƯ\left(1\right)\)
=>2x+1 thuộc {1;-1}
=>x thuộc {0;-1}
b:
ĐKXĐ: x<>1/3
\(\dfrac{3x^3-7x^2+11x-1}{3x-1}\in Z\)
=>3x^3-x^2-6x^2+2x+9x-3+2 chia hết cho 3x-1
=>2 chia hết cho 3x-1
=>3x-1 thuộc {1;-1;2;-2}
=>x thuộc {2/3;0;1;-1/3}
mà x nguyên
nên x thuộc {0;1}
c:
ĐKXĐ: x<>2
\(\dfrac{x^4-16}{x^4-4x^3+8x^2-16x+16}\in Z\)
=>\(\left(x^2-4\right)\left(x^2+4\right)⋮\left(x-2\right)^2\left(x^2+4\right)\)
=>\(x+2⋮x-2\)
=>x-2+4 chia hết cho x-2
=>4 chia hết cho x-2
=>x-2 thuộc {1;-1;2;-2;4;-4}
=>x thuộc {3;1;4;0;6;-2}
Bài 1: Cho số hữu tỉ x = a - 5 ( a khác 0 )
Với giá trị nguyên nào của a thì x có giá trị nguyên
Bài 2: Tìm giá trị nguyên của a để các biểu thức sau có giá trị nguyên
A= 3a + 9/a - 4 B= 6a + 5/ 2a - 1
ta thấy rằng 5 phải chia hết cho a tức là
a(U)5=1,-1;5,-5
vậy a 1,-1,5,-5 thì x có giá trị nguyên
HELP ME
Tìm x nguyên để các số sau có giá trị là số nguyên
a,A = 5/x+2 b,B = x-5/x c,C =x-2/x+1 d,2x-7/x+1
`a)A` nguyên `<=>x+2 in Ư_5`
Mà `Ư_5 ={+-1;+-5}`
`@x+2=1=>x=-1`
`@x+2=-1=>x=-3`
`@x+2=5=>x=3`
`@x+2=-5=>x=-7`
______________________________________________
`b)B=[x-5]/x=1-5/x`
`B` nguyên `<=>x in Ư_{5}`
Mà `Ư_{5}={+-1;+-5}`
`=>x in {+-1;+-5}`
______________________________________________
`c)C=[x-2]/[x+1]=[x+1-3]/[x+1]=1-3/[x+1]`
`C` nguyên `<=>x+1 in Ư_3`
Mà `Ư_3={+-1;+-3}`
`@x+1=1=>x=0`
`@x+1=-1=>x=-2`
`@x+1=3=>x=2`
`@x+1=-3=>x=-4`
______________________________________________
`d)D=[2x-7]/[x+1]=[2x+2-9]/[x+1]=2-9/[x+1]`
`D` nguyên `<=>x+1 in Ư_9`
Mà `Ư_9 ={+-1;+-3;+-9}`
`@x+1=1=>x=0`
`@x+1=-1=>x=-2`
`@x+1=3=>x=2`
`@x+1=-3=>x=-4`
`@x+1=9=>x=8`
`@x+1=-9=>x=-10`