tam giác ABC cân ở A
kẻ BD vuông góc với ac tại d d thuộc ac
kẻ ce vuông góc với ab e thuộc ab
bd cắt ce tại i
cm ad =ae
cm de song song với bc
cho m là trung đểm bc
cm ba điểm m;a;i thẳng hàng
cm ai^2+be^2=ad^2+bi^2
Cho tam giác ABC vuông tại A (AB < AC). D thuộc tia đối của tia AC, AD=AB. E thuộc tia đối của tia AB, AE=AC
a) Chưng minh BC = DE
b) Chứng minh: Tam giác ABD vuông cân và BD song song với CE
c) Kẻ đường cao AH của tam giác ABC. AH cắt DE tại M. Kẻ AK vuông góc với MC. AK cắt BD tại N. Chứng minh NM song song với AB
d) CM AM=1/2 DE
a) Xét tam giác ABC vuông tại A và tam giác ADE vuông tại A có:
AD=AB(gt)
AE=AC( gt)
=>Tam giác ABC=tam giác ADE (2 cạnh góc vuông)
b) Tam giác ABD có: A=900 ; AB=AD (gt)
=>Tam giác ABD vuông cân tại A.
Mk biết làm nhiu đó thui
mình làm tiếp theo câu B nha
chúng minh BD song song CE
ta có góc BCA=ADE(vì hai tam gics DAE=BAC câu a)
và nằm ở vị trí so le trong => DB //CE
còn câu c cái đề hình như bại sai sai sao ó
Cho tam giác ABC cân tại A (góc A < 90 độ). Kẻ BD vuông góc với AC (D thuộc AC), CE vuông góc với AB (E thuộc AB), BD và CE cắt nhau tại H
a) CM : Tam giác ABD = tam giác ACE
b) CM : Tam giác BHC cân
c) CM : ED // BC
d) AH cắt BC tại K, trên tia HK lấy điểm M sao cho K là trung điểm của HM. CM : tam giác ACM vuông
cho tam giác ABC cân tại A ( góc A < 90 độ ). Kẻ BD vuông góc với AC ( D thuộc AC ), CE vuông góc với AB ( E thuộc AB ). BD cắt CE tại H.
a) cm tam giác ABD = tam giác ACE
b) CM tam giác BHC cân
c) Cm ED // BC
d) AH cắt BC tại K,trên tia HK lấy điểm M sao cho K là trung điểm của HM.Cm tam giác ACM vuông
Câu a ) - Chứng minh tam giác vuông ABD = tam giác vuông ACE ( cạnh huyền - góc nhọn ) => Tự chứng minh
Câu b ) - Vì tam giác vuông ABD = tam giác vuông ACE ( ở câu a )
=> Góc B1 = góc C1 ( 2 góc tương ứng )
- Vì tam giác ABC là tam giác cân => góc B = góc C
Ta có góc B1 + góc B2 = góc C1 + C2
=> Góc B2 = góc C2
- Vậy tam giác HBC là tam giác cân
Câu c )
Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng: a) AM=IK b) Tam giác AMI bằng tam giác IKC c) AI=IC Bài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA a) CMR tam giác BID bằng tam giác CIA b) CMR : BD vuông góc với AB c) Qua A kẻ đường thẳng song song với BC cắt đường thẳng BD tại M. C/M tam giác BAM bằng tam giác ABC d) CMR: AB là tia phân giác cuả góc DAM Bài 3: Cho tam giác ABC vuông ở A và AB=AC.Gọi K là trung điểm của BC a) C/M: tam giác AKB bằng tam giác AKC b) C/M: AK vuông góc với BC c) từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E.C/M EK song song với AK Bài 4: Cho tam giác ABC có AB=AC, kẻ BD vuông góc với AC, CE vuông góc với AB(D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. CMR a) BD= CE b) tam giác OEB bằng tam giác ODC c) AO là tia phân giác cua góc BAC
1. Câu hỏi của 1234567890 - Toán lớp 7 - Học toán với OnlineMath
cho tam giác ABC cân tại A ( A < 90 độ ) . Kẻ BD vuông góc Ac ( D thuộc AC ) , CE vuông góc AB ( E thuộc AB ) , BD và CE cắt nhau tại H . a, CM : BD = CE . b, CM : tam giác BHC cân . c, CM : AH là đường trung trực của BC . d, TRên tia BD lấy điểm K sao cho D là trung điểm của BK . So sánh ECB và DKC
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
AB=AC
góc BAD chung
=>ΔADB=ΔAEC
=>BD=CE
b: góc ABD=góc ACE
=>góc HBC=góc HCB
=>ΔHBC cân tại H
c: AB=AC
HB=HC
=>AH là trung trực của BC
Cho tam giác ABC vuông tại A có AB = 6 cm, AC= 10 cm. Tia phân giác góc A cắt BC tại D. Qua D kẻ đường thẳng song song với AB cắt AC tại E. Tính BC, BD,CD, DE,CE,AE
Cho tam giác ABC cân tại A ( góc A < 90o ) . Kẻ BD vuông góc cới AC ( D thuộc AC ) , CE vuông góc với AB ( E thuộc AB ), BD và CE cắt nhau tại H
a) CM : Tam giác ABD = tam giác ACE
b) CM : Tam giác BHC cân
c) CM : ED // BC
d) AH cắt BC tại K , trên tia HK lấy điểm M sao cho K là trung điểm của HM . CM : tam giác ACM vuông
người ta hỏi bài mà lại hỏi người ta là muốn kết bạn không đúng là vớ vẩn
Cho tam giác ABC cân tại A kẻ BD vuông góc với AC (D thuộc AC) CE vuông góc với AB (E thuộc AB)
C/minh
BD=CE
Tam giác ADE cân
DE song song với BC
Gọi I là giao điểm của BD và CE
C/minh tam giác BIE bằng tam giác CID , tam giác BIE là tam giác gì?
Gọi D là trung điểm BC c /minh A I D thẳng hàng
a, Xét \(\Delta ABD\) và \(\Delta ACE\) vuông tại \(D;E\) có:
\(AB=AC\left(\Delta ABC-cân\right)\)
\(\widehat{A}\) chung
\(\Rightarrow\Delta ABD=\Delta ACE\left(ch-gn\right)\left(1\right)\)
\(\Rightarrow BD=CE\left(2c.t.ứ\right)\)
b, Từ \(\left(1\right)\Rightarrow AD=AE\left(2c.t.ứ\right)\)
\(\Rightarrow\Delta ADE\) cân tại \(A\)
\(\Rightarrow\widehat{ADE}=\frac{180^0-\widehat{A}}{2}\left(2\right)\)
Ta có: \(\Delta ABC\) cân tại \(A\)
\(\Rightarrow\widehat{ABC}=\frac{180^0-\widehat{A}}{2}\left(3\right)\)
c, Từ \(\left(3\right)\left(2\right)\Rightarrow\widehat{AED}=\widehat{ABC}\)
Mà 2 góc đang ở vị trí đồng vị nên:
\(\Rightarrow DE//BC\)
d, Xét \(\Delta EIB\) và \(\Delta DIC\) vuông tại \(E;D\) có:
\(EB=DC\left(AB=AC;EA=DA\right)\)
\(\widehat{EIB}=\widehat{DIC}\left(đ.đỉnh\right)\)
\(\Rightarrow\Delta EIB=\Delta DIC\left(cgv-gnđ\right)\left(4\right)\)
e, Xét \(\Delta BIE\) có:
\(\widehat{BEI}=90^0\)
\(\Rightarrow\Delta BIE\) vuông tại \(E\)
f, Từ \(\left(4\right)\Rightarrow BI=CI\left(2c.t.ứ\right)\left(5\right)\)
Ta có: \(BM=CM\left(M-là-t.điểm-BC\right)\)
\(\Rightarrow D\in\) đường trung trực \(BC\left(6\right)\)
Từ \(\left(5\right)\Rightarrow I\in\) đường trung trực \(BC\left(7\right)\)
Và \(AB=AC\Rightarrow A\in\) đường trung trực \(BC\left(8\right)\)
Từ \(\left(6\right)\left(7\right)\left(8\right)\Rightarrow A;I;M\) thẳng hàng.
P/s: Sửa đề Gọi \(M\) là trung điểm \(BC\)
Nếu nhưu gọi \(D\) thì nó bị trùng rồi bạn.
Có gì không hiểu thì hỏi ^_^