2 mũ 3x 2 mũ 2+7.9
bài 4; tính giá trị biểu thức
A = ( 5x mũ 5 + 5x mũ 4 ) : 5x mũ 2 - ( 2x mũ 4 - 8x mũ 2 -6 - 6x + 12 ) : ( 2x - 4 ) tại x = - 2
B = ( 3x mũ 4 - x mũ 2 - 2x ) : ( 3x mũ 2 + 3x + 2 ) + ( x mũ 4 - x mũ 2 ) : ( x mũ 2 - x ) tại x = - 5
Cho 3 đa thức:
M(x)=3x mũ 3+ x mũ 2+ 4x mũ 4- x- 3x mũ 3+5x mũ 4 +x mũ 2 - 6; N(x)=-x mũ 2-x mũ 4+ 4x mũ 3- x mũ 2-5x mũ 3 + 3x + 1 +x; P(x)= 1 + 2x mũ 5 - 3x mũ 2 + x mũ 5 + 3x mũ 3 - x mũ 4- 2x
Giup mình nhanh nha!!!
Thêm nữa câu a) Tính: M(x) + N(x)+ P(x)
B) Tính M(x) - N (x) - P(x)
ok rồi giúp mình với nha
tinh giá trị biểu thức
a, A = ( 5x mũ 5 + 5x mũ 4 ) : 5x mũ 2 - ( 2x mũ 4 - 8x mũ 2 - 6x + 12 ) : ( 2x - 4 ) tại x = -2
b, B = ( 3x mũ 4 - x mũ 2 - 2x ) : ( 3x mũ 2 + 3x + 2 ) + ( x mũ 4 - x mũ 2 ) : ( x mũ 2 - x ) tại x = -5
\(A=\left(5x^5+5x^4\right):5x^2-\left(2x^4-8x^2-6x+12\right):\left(2x-4\right)\)
Phép chia thứ nhất:
\(\left(5x^5+5x^4\right):5x^2=x^3+x^2\)
Phép chia thứ hai:
Vậy A = ( x^3 + x^2 ) - ( x^3 + 2x^2 - 3 ) = -x^2 + 3
Với x = -2 thì: A = -(-2)^2 + 3 = -4 + 3 = -1
B) bạn làm tương tự nhé
bài 1
15x mũ 2 y mũ 2 z :3xyz
3x mũ 2 .(5x mũ 2-4x+3)
(2x mũ 2 -3x):(x-4)
-5xy (3x mũ 2y -5xy +y mũ 2)
(4 phấn 3y mũ 3 +2 phấn 3y mũ 2-1 phần 3).-3y mũ 2
(-2x mũ 3-1 phần 4y-4yz).8xy mũ 2
Bài 1:
a) Ta có: \(\left(15x^2\cdot y^2\cdot z\right):3xyz\)
\(=\dfrac{15x^2y^2z}{3xyz}\)
\(=5xy\)
b) Ta có: \(3x^2\cdot\left(5x^2-4x+3\right)\)
\(=3x^2\cdot5x^2-3x^2\cdot4x+3x^2\cdot3\)
\(=15x^4-12x^3+9x^2\)
c) Ta có: \(\left(2x^2-3x\right):\left(x-4\right)\)
\(=\dfrac{2x^2-8x+5x-20+20}{x-4}\)
\(=\dfrac{2x\left(x-4\right)+5\left(x-4\right)+20}{x-4}\)
\(=2x+5+\dfrac{20}{x-4}\)
d) Ta có: \(-5xy\cdot\left(3x^2y-5xy+y^2\right)\)
\(=-5xy\cdot3x^2y+5xy\cdot5xy-5xy\cdot y^2\)
\(=-15x^3y^2+25x^2y^2-5xy^3\)
làm phép tính chia
n, ( 2 + x + 8x mũ 3 - 2x mũ 2 ) : ( 2x + 1 )
r, ( 8x - 5 - 3x mũ 3 - 3x mũ 2 + x mũ 4 ) : ( x - 1 )
a, ( x mũ 3 + 2 + x ) : ( x + 1 )
b, ( x mũ 4 + 3x + 1 + 3x mũ 3 ) : ( x mũ 2 + 1 )
Bài 2 :
a, ( 7 mũ x - 11 mũ 3 ) = 2 mũ 5 × 5 mũ 2 + 200
b, (3x - 2 mũ 10 ) = (3x - 2) mũ 7
bài 2:
P(X)=3x mũ 2 +7+ 2x mũ 4 -3x mũ 2 -4-5x+2x mũ 3
Q(x)=-3x mũ 3 +2x mũ 2 -x mũ 4 +x+x mũ 3 + 4x-2 + 5x mũ 4
a, thu gọn và sắp xếp các hạng tử của mỗi đa thức trên theo lũy thừa giảm dần của biến
\(P\left(x\right)=3x^2+7+2x^4-3x^2-4-5x+2x^3\)
\(=2x^4+2x^3+\left(3x^2-3x^2\right)-5x-4+7\)
\(=2x^4+2x^3-5x+3\)
\(Q\left(x\right)=-3x^3+2x^2-x^4+x+x^3+4x-2+5x^4\)
\(=\left(5x^4-x^4\right)+\left(-3x^3+x^3\right)+2x^2+\left(x+4x\right)-2\)
\(=4x^4-2x^3+2x^2+5x-2\)
Bài 2: Tìm x, biết
a) (x+3) mũ 2 - (x-4)(x+8) = 1
b) (x+3)(x mũ 2 - 3x + 9) -x(x-2)(x+2) = 15
c) (x-2) mũ 2 - (x+3) mũ 2 - 4(x+1) = 5
d) (2x-3)(2x+3) - (x-1) mũ 2 - 3x(x-5) = -44
e) (x-2) mũ 3 - (x-3)(x mũ 2 + 3x + 9) + 6(x+1) mũ 2 = 49
f) 5x(x-3) mũ 2 - 5(x-1) mũ 3 + 15(x+2)(x-2) = 5
g) (x+3) mũ 3 - x(3x+1) mũ 2 + (2x+1)(4x mũ 2 - 2x + 1) - 3x mũ 2 = 42
a) \(\left(x+3\right)^2-\left(x-4\right)\left(x+8\right)=1\)
\(\Leftrightarrow\left(x^2+6x+9\right)-\left(x^2+4x-32\right)-1=0\)
\(\Leftrightarrow2x=-40\)
\(\Rightarrow x=-20\)
b) \(\left(x+3\right)\left(x^2-3x+9\right)-x\left(x-2\right)\left(x+2\right)=15\)
\(\Leftrightarrow x^3+27-x^3+4x=15\)
\(\Leftrightarrow4x=-12\)
\(\Rightarrow x=-3\)
c) \(\left(x-2\right)^2-\left(x+3\right)^2-4\left(x+1\right)=5\)
\(\Leftrightarrow\left(x^2-4x+4\right)-\left(x^2+6x+9\right)-\left(4x+4\right)=5\)
\(\Leftrightarrow-14x=14\)
\(\Rightarrow x=-1\)
d) \(\left(2x-3\right)\left(2x+3\right)-\left(x-1\right)^2-3x\left(x-5\right)=-44\)
\(\Leftrightarrow4x^2-9-\left(x^2-2x+1\right)-\left(3x^2-15x\right)=-44\)
\(\Leftrightarrow17x=-34\)
\(\Rightarrow x=-2\)
e) \(\left(x-2\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2=49\)
\(\Leftrightarrow x^3-6x^2+12x-8-x^3+27+6x^2+12x+6=49\)
\(\Leftrightarrow24x=24\)
\(\Rightarrow x=1\)
f) \(5x\left(x-3\right)^2-5\left(x-1\right)^3+15\left(x+2\right)\left(x-2\right)=5\)
\(\Leftrightarrow5x^3-30x^2+45x-5x^3+15x^2-15x+5+15x^2-60=5\)
\(\Leftrightarrow30x=60\)
\(\Rightarrow x=2\)
g) \(\left(x+3\right)^3-x\left(3x+1\right)^2+\left(2x+1\right)\left(4x^2-2x+1\right)-3x^2=42\)
\(\Leftrightarrow x^3+9x^2+27x+27-9x^3-6x^2-x+8x^3+1-3x^2=42\)
\(\Leftrightarrow26x=14\)
\(\Rightarrow x=\frac{7}{13}\)
1.(x -5) mũ 2 - 25 =0
2. (x -2) mũ 3 =27
3. 3(x -7) + 2x(x+2) = 2x mũ 2
4. (x mũ 2 - 4) (x +8) =0
5. x mũ 2 + 3x = 0
6. 3x mũ 3 - 3x = 0
7. (x +1) mũ 2 = ( 2x +3) mũ 2
1.(x -5)^2 - 25 =0
=> (x - 5)^2 = 25
=> x - 5 = 5 hoặc x - 5 = -5
=> x = 10 hoặc x = 0
vậy_
2. (x -2)^3 =27
=> x - 2 = 3
=> x = 5
vậy_
3. 3(x -7) + 2x(x+2) = 2x^2
=> 3x - 21 + 2x^2 + 4x = 2x^2
=> 7x - 21 = 0
=> 7x = 21
=> x = 3
vậy_
4. (x^2 - 4) (x +8) =0
=> x^2 - 4 = 0 hoặc x + 8 = 0
=> x^2 = 4 hoặc x = -8
=> x = 2 hoặc x = -2 hoặc x = -8
vậy_
5. x^ 2 + 3x = 0
=> x(x + 3) = 0
=> x = 0 hoặc x + 3 = 0
=> x = 0 hoặc x = -3
vậy_
6. 3x^3 - 3x = 0
=> 3x(x^2 - 1) = 0
=> 3x(x - 1)(x + 1) = 0
=> x = 0 hoặc x = 1 hoặc x = -1
vậy_
7. (x +1)^2 = ( 2x +3)^2
=> (x + 1 + 2x + 3)(x + 1 - 2x - 3) = 0
=> (3x + 3)(-x - 2) = 0
=> x = -1 hoặc x = -2
vậy_
Bài làm
1) ( x - 5 )2 - 25 = 0
<=> ( x - 5 - 5 )( x - 5 + 5 ) = 0
<=> x( x - 10 ) =
<=> \(\orbr{\begin{cases}x=0\\x-10=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=10\end{cases}}}\)
Vậy S = { 0; 10 }
2) \(\left(x-2\right)^3=27\)
\(\Leftrightarrow\left(x-2\right)^3=3^3\)
\(\Leftrightarrow x-2=3\)
\(\Leftrightarrow x=5\)
Vậy x = 5 là nghiệm phương trình.
3) \(3\left(x-7\right)+2x\left(x+2\right)=2x^2\)
\(\Leftrightarrow3x+2x^2+4x-2x^2=21\)
\(\Leftrightarrow7x=21\)
\(\Leftrightarrow x=\frac{21}{7}=3\)
Vậy x = 3 là nghiệm phương trình
4) \(\left(x^2-4\right)\left(x+8\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-4=0\\x+8=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x^2=\pm2\\x=-8\end{cases}}}\)
Vậy S = { 2; -2; -8 }
5) \(x^2+3x=0\)
\(\Leftrightarrow x\left(x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-3\end{cases}}}\)
Vậy S = { 0; -3 }
6) \(3x^3-3x=0\)
\(\Leftrightarrow3x\left(x^2-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x=0\\x^2-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}}\)
Vậy S = { +1; 0 }
7) \(\left(x+1\right)^2=\left(2x+3\right)^2\)
\(\Leftrightarrow\left(x+1\right)^2-\left(2x+3\right)^2=0\)
\(\Leftrightarrow\left(x+1-2x-3\right)\left(x+1+2x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}-x-2=0\\3x+4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-\frac{4}{3}\end{cases}}}\)
Vậy S = { -2; -4/3 }
# Học tốt #