Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Huyền My

Những câu hỏi liên quan
Nguyễn Bảo Huy
Xem chi tiết
BBBT
Xem chi tiết
HT.Phong (9A5)
24 tháng 9 2023 lúc 17:31

a) \(\sqrt{1-8x+16x^2}=\dfrac{1}{3}\)

\(\Leftrightarrow\sqrt{1^2-2\cdot4x\cdot1+\left(4x\right)^2}=\dfrac{1}{3}\)

\(\Leftrightarrow\sqrt{\left(4x-1\right)^2}=\dfrac{1}{3}\)

\(\Leftrightarrow\left|4x-1\right|=\dfrac{1}{3}\)

\(\Leftrightarrow\left[{}\begin{matrix}4x-1=\dfrac{1}{3}\left(ĐK:x\ge\dfrac{1}{4}\right)\\4x-1=\dfrac{1}{3}\left(ĐK:x< \dfrac{1}{4}\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}4x=\dfrac{4}{3}\\4x=\dfrac{2}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\left(tm\right)\\x=\dfrac{1}{6}\left(tm\right)\end{matrix}\right.\)

b) \(\sqrt{16x-32}+\sqrt{25x-50}=18+\sqrt{9x-18}\) (ĐK: \(x\ge2\)

\(\Leftrightarrow\sqrt{16\left(x-2\right)}+\sqrt{25\left(x-2\right)}=18+\sqrt{9\left(x-2\right)}\)

\(\Leftrightarrow4\sqrt{x-2}+5\sqrt{x-2}=18+3\sqrt{x-2}\)

\(\Leftrightarrow6\sqrt{x-2}=18\)

\(\Leftrightarrow\sqrt{x-2}=3\)

\(\Leftrightarrow x-2=9\)

\(\Leftrightarrow x=9+2\)

\(\Leftrightarrow x=11\left(tm\right)\)

bùi quỳnh nga
Xem chi tiết
Khánh Vân
Xem chi tiết
Nguyễn Trà My
1 tháng 8 2017 lúc 12:46

\(1.\)

\(x^3z+x^2yz-x^2z^2-xyz^2\)

\(=x^3z-x^2z^2+x^2yz-xyz^2\)

\(=x^2z\left(x-z\right)-xyz\left(x-z\right)\)

\(=\left(x^2z-xyz\right)\left(x-z\right)\)

\(=xz\left(x-y\right)\left(x-z\right)\)

\(2.\)

\(x^2-\left(a+b\right)xy+aby^2\)

\(=x^2-axy-bxy+aby^2\)

\(=x^2-bxy-axy+aby^2\)

\(=x\left(x-by\right)-ay\left(x-by\right)\)

\(=\left(x-ay\right)\left(x-by\right)\)

\(3.\)

\(ab\left(x^2+y^2\right)+xy\left(x^2+y^2\right)\)

\(=abx^2+aby^2+a^2xy+b^2xy\)

\(=abx^2+b^2xy+a^2xy+aby^2\)

\(=bx\left(ax+by\right)+ay\left(ax+by\right)\)

\(=\left(ax+by\right)\left(bx+ay\right)\)

\(4.\)

\(\left(xy+ab\right)^2+\left(ay-bx\right)^2\)

\(=x^2y^2+2abxy+a^2b^2+a^2y^2-2aybx+b^2x^2\)

\(=x^2y^2+a^2b^2+a^2y^2+b^2x^2\)

\(=x^2y^2+b^2x^2+a^2b^2+a^2y^2\)

\(=x^2\left(b^2+y^2\right)+a^2\left(b^2+y^2\right)\)

\(=\left(a^2+x^2\right)\left(b^2+y^2\right)\)

\(5.\)

\(a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)\)

\(=a^2b-a^2c+b^2c-ab^2+ac^2-bc^2\)

\(=a^2b-ab^2-a^2c-b^2c+ac^2-bc^2\)

\(=ab\left(a-b\right)-c\left(a^2-b^2\right)+c^2\left(a-b\right)\)

\(=ab\left(a-b\right)-c\left(a-b\right)\left(a+b\right)+c^2\left(a-b\right)\)

\(=\left(a-b\right)\left(ab-ac-bc+c^2\right)\)

\(=\left(a-b\right)\left(ab-bc-ac+c^2\right)\)

\(=\left(a-b\right)\left[b\left(a-c\right)-c\left(a-c\right)\right]\)

\(=\left(a-c\right)\left(b-c\right)\left(a-c\right)\)

\(=\left(a-b\right)\left(a-c\right)\left(b-c\right)\)

\(6.\)

\(16x^2-40xy+2y^2\)

\(=\left(4x\right)^2-2\cdot4\cdot5xy+\left(5y\right)^2\)

\(=\left(4x-5y\right)^2\)

\(7.\)

\(25x^4-10x^2y+y^2\)

\(=\left(5x^2\right)^2-2\cdot5x^2y+y^2\)

\(=\left(5x^2+y\right)^2\)

\(8.\)

\(-16x^4y^6-24x^5y^5-9x^6y^4\)

\(=-\left(4^2x^4y^6+2\cdot4\cdot3x^5y^5+3^2x^6y^4\right)\)

\(=-\left[\left(4x^2y^3\right)^2+2\left(4x^2y^3\right)\left(3x^3y^2\right)+\left(3x^3y^2\right)^2\right]\)

\(=\left(4x^2y^3+3x^3y^2\right)^2\)

\(9.\)

\(16x^2-4y^2-8x+1\)

\(=\left(4x\right)^2-\left(2y\right)^2-8x+1\)

\(=\left(4x\right)^2-8x+1-\left(2y\right)^2\)

\(=\left(4x+1\right)^2-\left(2y\right)^2\)

\(=\left(4x-2y+1\right)\left(4x+2y+1\right)\)

\(10.\)

\(49x^2-25+42xy+9y^2\)

\(=\left(7x\right)^2-5^2+2\cdot7\cdot3xy+\left(3y\right)^2\)

\(=\left(7x\right)^2+2\cdot7\cdot3xy+\left(3y\right)^2-5^2\)

\(=\left(7x+3y\right)^2-5^2\)

\(=\left(7x+5y+5\right)\left(7x+3y-5\right)\)

Uyen Nguyen
Xem chi tiết
Nguyễn Linh Anh
Xem chi tiết
ỉn2k8>.
Xem chi tiết
Nguyễn Ngọc Lộc
29 tháng 6 2021 lúc 8:26

Bài 2 :

\(A=4x^2-2.2x.2+4+1\)

\(=\left(2x-2\right)^2+1\)

Thấy : \(\left(2x-2\right)^2\ge0\)

\(A=\left(2x-2\right)^2+1\ge1\)

Vậy \(MinA=1\Leftrightarrow x=1\)

\(B=\left(5x\right)^2-2.5x.1+1-4\)

\(=\left(5x-1\right)^2-4\)

Thấy : \(\left(5x-1\right)^2\ge0\)

\(\Rightarrow B=\left(5x-1\right)^2-4\ge-4\)

Vậy \(MinB=-4\Leftrightarrow x=\dfrac{1}{5}\)

\(C=\left(7x\right)^2-2.7x.2+4-5\)

\(=\left(7x-2\right)^2-5\)

Thấy : \(\left(7x-2\right)^2\ge0\)

\(\Rightarrow C=\left(7x-2\right)^2-5\ge-5\)

Vậy \(MinC=-5\Leftrightarrow x=\dfrac{2}{7}\)

missing you =
29 tháng 6 2021 lúc 8:33

\(1.\)

\(A=-x^2-10x+1=-\left(x^2+10x-1\right)\)

\(=-\left(x^2+2.5x+5^2-5^2-1\right)=-\left[\left(x+5\right)^2-26\right]\)

\(=-\left(x+5\right)^2+26\le26\) dấu "=" xảy ra<=>x=-5

\(B=-4x^2-6x-5=-4\left(x^2+\dfrac{6}{4}x+\dfrac{5}{4}\right)\)

\(=-4\left(x^2+2.\dfrac{3}{4}x+\dfrac{9}{16}+\dfrac{11}{16}\right)\)\(=-4\left[\left(x+\dfrac{3}{2}\right)^2+\dfrac{11}{6}\right]\le-\dfrac{11}{4}\)

\(C=-16x^2+8x-1=-16\left(x^2-\dfrac{1}{2}x+\dfrac{1}{16}\right)\)

\(=-16\left(x^2-2.\dfrac{1}{4}x+\dfrac{1}{16}\right)=-16\left(x-\dfrac{1}{4}\right)^2\le0\)

dấu"=" xảy ra<=>x=1/4

 

 

 

inderip
Xem chi tiết
Akai Haruma
21 tháng 8 2023 lúc 16:56

Lời giải:

a. 

$(xy)^2-xy-2=(x^2y^2+xy)-(2xy+2)$

$=xy(xy+1)-2(xy+1)=(xy+1)(xy-2)$

b. Bạn xem lại đoạn $-16x^2$ là dấu - hay + vậy?

lê huyền trang
Xem chi tiết
An Nguyễn Bá
25 tháng 10 2017 lúc 8:29

\(x^8+64\)

\(=x^8+16x^4+64-16x^4\)

\(=\left(x^4\right)^2+2.x^4.8+8^2-16x^4\)

\(=\left(x^4+8\right)^2-\left(4x^2\right)^2\)

\(=\left(x^4+8-4x^2\right)\left(x^4+8+4x^2\right)\)

phạm minh đức
2 tháng 11 2017 lúc 20:26

5x2+11x+6

=5x2+5x+6x+6

=(5x2+5x)+(6x+6)

=5x(x+1)+6(x+1)

=(x+1)(5x+6)

phạm minh đức
2 tháng 11 2017 lúc 20:30

x2-16x+15

= x2-x-15x+15

= (x2-x)-(15x-15)

= x(x-1)-15(x-1)

=(x-1)(x-15)