Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Th Ngô Sĩ Liên Khánh 5a9
Xem chi tiết
Like cho mình với
21 tháng 8 2017 lúc 18:02

549 + X = 1326
X = 1326 - 549
X = 777
X - 636 = 5618
X = 5618 + 636
X = 6254

Th Ngô Sĩ Liên Khánh 5a9
21 tháng 8 2017 lúc 18:07

549 ,1326 ở đâu zậy bạn  !!! :/

Nguyễn Hoàng Tuấn Tú
Xem chi tiết
Athanasia Karrywang
24 tháng 9 2021 lúc 19:02

4A = 4.[1.2.3 + 2.3.4 + 3.4.5 + … + (n – 1).n.(n + 1)]

4A = 1.2.3.4 + 2.3.4.4 + 3.4.5.4 + … + (n – 1).n.(n + 1).4

4A = 1.2.3.4 + 2.3.4.(5 – 1) + 3.4.5.(6 – 2) + … + (n – 1).n.(n + 1).[(n + 2) – (n – 2)]

4A = 1.2.3.4 + 2.3.4.5 – 1.2.3.4 + 3.4.5.6 – 2.3.4.5 + … + (n – 1).n(n + 1).(n + 2) – (n – 2).(n – 1).n.(n + 1)

4A = (n – 1).n(n + 1).(n + 2)

A = (n – 1).n(n + 1).(n + 2) : 4.

Khách vãng lai đã xóa
Nguyễn Hoàng Tuấn Tú
24 tháng 9 2021 lúc 19:03

cau a thi sao ha ban ? 

Khách vãng lai đã xóa
Nguyễn Hoàng Tuấn Tú
24 tháng 9 2021 lúc 19:05

ok thanks ban nhe

Khách vãng lai đã xóa
ShinRan
Xem chi tiết
Lãnh Hạ Thiên Băng
11 tháng 11 2016 lúc 19:38

4(1.2.3) = 1.2.3.4 - 0.1.2.3

4(2.3.4) = 2.3.4.5 - 1.2.3.4

4(3.4.5) = 3.4.5.6 - 2.3.4.5

....................................

4(n-1)n(n+1) = (n-1)n(n+1)(n+2) - (n-2)(n-1)n(n+1)

=> 4 B = (n-1)n(n+1)(n+2) => B= (n-1)n(n+1)(n+2):4

Nguyễn Hữu Triết
11 tháng 11 2016 lúc 19:27

4(1.2.3)=1.2.3.4 - 0.1.2.3

4(2.3.4)=2.3.4.5 - 1.2.3.4

4(3.4.5)=3.4.5.6 - 2.3.4.5

.........................

......................................

.......................................

ShinRan
11 tháng 11 2016 lúc 19:29

thank

Hà Thu Nguyễn
Xem chi tiết
soyeon_Tiểubàng giải
29 tháng 11 2016 lúc 23:07

Đặt A = 1.2.3 + 2.3.4 + 3.4.5 + ... + 28.29.30

4A = 1.2.3.(4-0) + 2.3.4.(5-1) + 3.4.5.(6-2) + ... + 28.29.30.(31-27)

4A = 1.2.3.4 - 0.1.2.3. + 2.3.4.5 - 1.2.3.4 + 3.4.5.6 - 2.3.4.5 + ... + 28.29.30.31 - 27.28.29.30

4A = 28.29.30.31 - 0.1.2.3

4A = 28.29.30.31

\(A=\frac{28.29.30.31}{4}=7.29.30.31=188790\)

Theo cách tính trên ta dễ dàng tính được:

1.2.3 + 2.3.4 + 3.4.5 + ... + (n - 1).n.(n + 1) = \(\frac{\left(n-1\right).n.\left(n+1\right).\left(n+2\right)}{4}\)

Trần Thị Ngọc Như
Xem chi tiết
Nguyễn Lệ Ngân
28 tháng 1 2016 lúc 22:48

B=1.2.3+2.3.4+3.4.5+...+n(n+1)(n+2)

  ={1.2.3.(4-0)+2.3.4(5-1)+3.4.5.(6-2)+...+n(n+1)(n+2)[(n+3)-(n-1)]} : 4

  = [1.2.3.4+2.3.4.5+3.4.5.6+...+n(n+1)(n+2)(n+3) - 1.2.3.4 - 2.3.4.5 - 3.4.5.6 - ... - n(n+1)(n+2)(n-1)] : 4

  =\(\frac{\text{ n(n+1)(n+2)(n+3) }}{4}\)

 

Tedotoji
28 tháng 1 2016 lúc 22:46

B = \(\frac{n\left(n+1\right)\left(n+2\right)\left(n+3\right)}{4}\)

Nguyễn Linh Trâm
Xem chi tiết
Thanh Hà
13 tháng 2 2018 lúc 12:16

A = \(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2007}}+\frac{1}{3^{2008}}\)

3A= \(1+\frac{1}{3}+...+\frac{1}{3^{2006}}+\frac{1}{3^{2007}}\)

3A-A= \(1-\frac{1}{3^{2008}}\)

Thanh Hà
13 tháng 2 2018 lúc 12:18

B = \(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{n-1}}+\frac{1}{3^n}\)

3B = \(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{n-2}}+\frac{1}{3^{n-1}}\)

3B - B = \(1-\frac{1}{3^n}\)

Phùng Minh Quân
13 tháng 2 2018 lúc 12:21

Ta có :

\(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2007}}+\frac{1}{3^{2008}}\)

\(\Leftrightarrow\)\(3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2006}}+\frac{1}{3^{2007}}\)

\(\Leftrightarrow\)\(3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2006}}+\frac{1}{3^{2007}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2007}}+\frac{1}{3^{2008}}\right)\)

\(\Leftrightarrow\)\(2A=1-\frac{1}{3^{2008}}\)

\(\Leftrightarrow\)\(2A=\frac{3^{2008}-1}{3^{2008}}\)

\(\Leftrightarrow\)\(A=\frac{3^{2008}-1}{3^{2008}}:2\)

\(\Leftrightarrow\)\(A=\frac{3^{2008}-1}{2.3^{2008}}\)

Vậy \(A=\frac{3^{2008}-1}{2.3^{2008}}\)

Đức Minh Nguyễn
Xem chi tiết
Lê Bảo Kỳ
7 tháng 5 2018 lúc 22:23

tao có:

2p=2/1.2.3+2/2.3.4+...+2/n.n(+1)n(n+2)

2p=3-1/1.2.3+4-2/1.2.3+...+(n+2)-n/n.(n+1).(n+2)

2p=3/1.2.3-1/1.2.3+4/2.3.4-2/2.3.4+...+(n+2)/n.(n+1).(n+2)-n/n.(n+1).(n+2)

2p=1/1.2-1/2.3+1/2.3-1/3.4+...+1/n.(n+1)-1/(n+1).(n+2)

2p=1/1.2-1/(n+1).(n+2)

2p=(n+!).(n+2)-2/(2n+2).(n+2)

suy ra p=(n+1).(n+2)-2/(2n+2).(2n+4)

2s=3-1/1.2.3+4-2/1.2.3+...+50-48/48.49.50

2s=3/1.2.3-1/1.2.3+4/2.3.4-2/2.3.4+...+50/49.50.48-48/48.50.49

2s=1/1.2-1/2.3+1/2.3-1/3.4+...+1/48.49-1/49.50

2s=1/1.2-1/49.50

'2s=1/2-1/2450

2s=1225/2450-1/2450

2s=1224/2450

s=612/1225

Nguyễn Phương Uyên
8 tháng 5 2018 lúc 9:27

\(P=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{n\left(n+1\right)\left(n+2\right)}\)1

\(P=\frac{1}{2}\left(\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+\frac{2}{3\cdot4\cdot5}+...+\frac{2}{n\left(n+1\right)\left(n+2\right)}\right)\)

\(P=\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+\frac{1}{3\cdot4}-\frac{1}{4\cdot5}+...+\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)\)

\(P=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)\)

\(P=\frac{\left(\frac{1}{2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)}{2}\)

S cx tinh giong v

No name :)))
Xem chi tiết
︵✰Ah
16 tháng 2 2021 lúc 19:11

https://olm.vn/hoi-dap/tim-kiem?q=t%C3%ADnh+t%E1%BB%95ng+sau+:S+=+1.2.3+2.3.4+3.4.5+...+n.(n+1).(n+2)+&id=601088

Nguyễn Thị Phương Thảo
Xem chi tiết