tính A=\(\frac{2^2}{1.3}+\frac{3^2}{2.4}+\frac{4^2}{3.5}+...+\frac{2016^2}{2015.2017}\)
tính : \(\frac{1}{2}.\left(1+\frac{1}{1.3}\right).\left(1+\frac{1}{2.4}\right).\left(1+\frac{1}{3.5}\right).....\left(1+\frac{1}{2015.2017}\right)\)
\(\frac{1}{2}.\left(1+\frac{1}{1.3}\right).\left(1+\frac{1}{2.4}\right).\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{2015.2017}\right)\)
\(=\frac{1}{2}.\frac{1.3+1}{1.3}.\frac{2.4+1}{2.4}.\frac{3.5+1}{3.5}...\frac{2015.2017+1}{2015.2017}\)
\(=\frac{1}{2}.\frac{2.2}{1.3}.\frac{3.3}{2.4}.\frac{4.4}{3.5}...\frac{2016.2016}{2015.2017}\)
\(=\frac{1}{2}.\frac{2.3.4...2016}{1.2.3...2015}.\frac{2.3.4...2016}{3.4.5...2017}\)
\(=\frac{1}{2}.2016.\frac{2}{2017}=\frac{2016}{2017}\)
tính giá trị của biểu thức A=\(\frac{1}{2}\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{2015.2017}\right)\).
2A=\(\left(1+\frac{1}{3}\right)\)\(\left(1+\frac{1}{8}\right)\)\(\left(1+\frac{1}{15}\right)\)\(.......\)\(\left(1+\frac{1}{4064255}\right)\)
2A = \(\frac{4}{3}\)\(.\)\(\frac{9}{8}\)\(.\)\(\frac{16}{15}\)\(......\)\(\frac{4064256}{4064255}\)
2A = \(\frac{2.2}{1.3}\)\(.\)\(\frac{3.3}{2.4}\)\(.\)\(\frac{4.4}{3.5}\)\(......\)\(\frac{2016.2016}{2015.2017}\)
2A = \(\frac{2.3.4....2016}{1.2.3.....2015}\)\(.\)\(\frac{2.3.4....2016}{3.4.5....2017}\)
2A = \(\frac{2016}{1}\)\(.\)\(\frac{2}{2017}\)
2A = \(\frac{4032}{2017}\)
A = \(\frac{4032}{2017}\)\(:2\)
A = \(\frac{2016}{2017}\)
Tính \(\frac{1}{2}.\left(1+\frac{1}{1.3}\right).\left(1+\frac{1}{2.4}\right).\left(1+\frac{1}{3.5}\right)....\left(1+\frac{1}{2015.2017}\right)\)
\(\frac{1}{2}.\left(1+\frac{1}{1.3}\right).\left(1+\frac{1}{2.4}\right).\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{2015.2017}\right)\)
\(=\frac{1}{2}.\frac{1.3+1}{1.3}.\frac{2.4+1}{2.4}.\frac{3.5+1}{3.5}...\frac{2015.2017+1}{2015.2017}\)
\(=\frac{1}{2}.\frac{2.2}{1.3}.\frac{3.3}{2.4}.\frac{4.4}{3.5}...\frac{2016.2016}{2015.2017}\)
\(=\frac{1}{2}.\frac{2.3.4...2016}{1.2.3...2015}.\frac{2.3.4...2016}{3.4.5...2017}\)
\(=\frac{1}{2}.2016.\frac{2}{2017}=\frac{2016}{2017}\)
Tính a=\(\frac{1.3}{2^2}.\frac{2.4}{3^2}\frac{3.5}{4^2}...\frac{2016.2018}{2017^2}\)
bạn làm ntn
ta có
\(\frac{1.2.3.....2016}{2.3.4.....2017}.\frac{3.4.5.....2018}{2.3.4.....2017}\)
và rút gọn
tính
A=\(\frac{2^2}{1.3}+\frac{3^2}{2.4}+\frac{4^2}{3.5}+\frac{5^2}{4.6}+\frac{6^2}{5.7}\)
= \(\frac{2.2}{1.3}+\frac{3.3}{2.4}+\frac{4.4}{3.5}+\frac{5.5}{4.6}+\frac{6.6}{5.7}\)
= \(\frac{2.3.4.5.6}{1.2.3.4.5}+\frac{2.3.4.5.6}{3.4.5.6.7}\)
= \(\frac{2}{1}+\frac{6}{7}\)
= 2\(\frac{6}{7}\)
Mình nghĩ zậy !!!!!!!!!!!!!!!!!!
bài đó cũng có trong đề cương thi của mih
TÍNH:\(\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}.\frac{5^2}{4.6}\).
\(A=\frac{2^2}{1.3}\cdot\frac{2^2}{2.4}\cdot\frac{2^2}{3.5}\cdot\frac{2^2}{4.6}\)
\(A=\frac{4}{3}\cdot\frac{1}{2}\cdot\frac{4}{15}\cdot\frac{1}{6}\)
\(A=\frac{4.1.4.1}{3.2.15.6}\)
\(A=\frac{4}{135}\)
\(\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}.\frac{5^2}{4.6}\)
\(=\frac{2.2}{1.3}.\frac{3.3}{2.4}.\frac{4.4}{3.5}.\frac{5.5}{4.6}\)
\(=\frac{2.3.4.5}{1.2.3.4}.\frac{2.3.4.5}{3.4.5.6}\)
\(=\frac{5}{1}.\frac{2}{6}\)
\(=\frac{5}{1}.\frac{1}{3}\)
\(=\frac{5}{3}\)
Tính
\(\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}.......\frac{50^2}{49.51}\)
\(\text{= 2/1 . 2/3 . 3/2 . 3/4 . 4/3 . 4/5 ....... 50/49.50/51 }\)
Dùng phương pháp khử liên tiếp ta có
\(=\frac{2}{1}-\frac{50}{51}=\frac{52}{51}\)
Tính tổng
\(\frac{1.3}{2^2}.\frac{2.4}{3^2}.\frac{3.5}{4^2}...\frac{2016.2018}{2017^2}\)
=\(\frac{1.3.2.4.3.5...2016.2018}{2.2.3.3.4.4...2017.2017}\)
Ta tách thành hai dãy trên cả mẫu và tử và được \(\frac{\left(1.2.3...2016\right).\left(3.4.5...2018\right)}{\left(2.3.4...2017\right).\left(2.3.4...2017\right)}\)
Giờ thì sẽ rút gọn được kết quả=\(\frac{2018}{2017.2}=\frac{1009}{2017}\)
Tính:
\(\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}....\frac{59^2}{58.60}=\)