Tìm GTNN của 3x²+6x+8
Tìm GTNN của A=3x^2-6x+5
Xe máy thứ nhất 1 giờ đi được 1/4 quảng đường
Xe máy thứ hai 1 giờ đi được 1/3 quảng đường
Sau 1,5 giờ 2 xe đi được:(1/4+1/3)x1,5=7/12x3/2=7/8(quảng đường)
quảng đường AB là:
15x8=120(km)
Tìm GTNN
\(A=x^2-2x+5\)
\(B=4x^2+4x+3\)
\(C=9x^2-6x+7\)
D\(=5x^2+3x+8\)
`A=x^2-2x+5`
`=x^2-2x+1+4`
`=(x-1)^2+4>=4`
Dấu "=" `<=>x=1`
`B=4x^2+4x+3`
`=4x^2+4x+1+2`
`=(2x+1)^2+2>=2`
Dấu "=" xảy ra khi `x=-1/2`
`C=9x^2-6x+7`
`=9x^2-6x+1+6`
`=(3x-1)^2+6>=6`
Dấu '=' xảy ra khi `x=1/3`
`D=5x^2+3x+8`
`=5(x^2+3/5x)+8`
`=5(x^2+3/5x+9/100-9/100)+8`
`=5(x+3/10)^2+151/20>=151/20`
Dấu "=" xảy ra khi `x=-3/10`
\(A=x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4\)
Ta có: \(\left(x-1\right)^2\ge0\Rightarrow\left(x-1\right)^2+4\ge4\Rightarrow A_{min}=4\) khi \(x=1\)
\(B=4x^2+4x+3=4x^2+4x+1+2=\left(2x+1\right)^2+2\)
Ta có: \(\left(2x+1\right)^2\ge0\Rightarrow\left(2x+1\right)^2+2\ge2\Rightarrow B_{min}=2\) khi \(x=-\dfrac{1}{2}\)
\(C=9x^2-6x+7=9x^2-6x+1+6=\left(3x-1\right)^2+6\)
Ta có: \(\left(3x-1\right)^2\ge0\Rightarrow\left(3x-1\right)^2+6\ge6\Rightarrow C_{min}=6\) khi \(x=\dfrac{1}{3}\)
\(D=5x^2+3x+8\Rightarrow5\left(x^2+2.x.\dfrac{3}{10}+\dfrac{9}{100}\right)+\dfrac{151}{20}=5\left(x+\dfrac{3}{10}\right)^2+\dfrac{151}{20}\)
Ta có: \(5\left(x+\dfrac{3}{10}\right)^2\ge0\Rightarrow5\left(x+\dfrac{3}{10}\right)^2+\dfrac{151}{20}\ge\dfrac{151}{20}\)
\(\Rightarrow D_{min}=\dfrac{151}{20}\) khi \(x=-\dfrac{3}{10}\)
- A = (x-1)2 + 4 \(\ge4\)
Dấu "=" <=> x = 1
- B = (2x+1)2 +2 \(\ge2\)
Dấu "=" xảy ra <=> x = \(\dfrac{-1}{2}\)
- C = (3x - 1)2 + 6 \(\ge6\)
Dấu "=" <=> x = \(\dfrac{1}{3}\)
- D = \(5\left(x^2+\dfrac{3}{5}x+\dfrac{9}{100}\right)+\dfrac{151}{20}=5\left(x+\dfrac{3}{10}\right)^2+\dfrac{151}{20}\ge\dfrac{151}{20}\)
Dấu "=" <=> x = \(\dfrac{-3}{10}\)
tìm GTNN của A = 3x^2 + 6x -1
A=3x2+6x-1=3x2+6x+3-4=3(x+1)2-4
Do (x+1)2>0
=>3(x+1)2>0
=>A=3(x+1)2-4>-4
=>Min A=-4 <=>(x+1)2=0<=>x=-1
Tìm GTNN của biểu thức C=3x^2+6x-1
3x^2 + 6x - 1
= 3(x^2 + 2x - 1/3)
= 3(x^2 + 2x + 1 - 4/3)
= 3(x+1)^2 - 4 ≥ - 4
=> Cmin = - 4
Dấu "=" xảy ra khi x + 1 = 0<=> x = -1
Vậy Cmin = -4 khi x = -1
3x^2 + 6x - 1
= 3(x^2 + 2x - 1/3)
= 3(x^2 + 2x + 1 - 4/3)
= 3(x+1)^2 - 4 ≥ - 4
=> min = - 4
Dấu "=" xảy ra khi x + 1 = 0<=> x = -1
Vậy min = -4 khi x = -1
\(C=3x^2+6x-1\)
\(=3\left(x^2+2x\right)-1\)
\(=3\left(x^2+2x.1+1^2-1\right)-1\)
\(=3[\left(x+1\right)^2-1]-1\)
\(=3\left(x+1\right)^2-3-1\)
\(=3\left(x+1\right)^2-4\)
Ta có: \(\left(x+1\right)^2\ge0\forall x\Rightarrow3\left(x+1\right)^2\ge0\Rightarrow C\ge-4\)
Dấu '' = '' xảy ra khi: \(\left(x+1\right)^2=0\Rightarrow x+1=0\Rightarrow x=-1\)
Vậy \(MinC=-4\) chỉ khi \(x=-1\)
Tìm GTNN của 3x^2-6x+1
Tìm GTLN của 5-8x-x^2
Tìm GTNN và GTLN của A=6x-2/3x^2+1
Tìm nghiệm của đa thức -6x^2+3x+3
Tìm GTNN của 4x^2+4x+2022
\(4x^2+4x+2022=4x^2+4x+1+2021=\left(2x+1\right)^2+2021\ge2021\)
dấu "=" xảy ra \(< =>2x+1=0< =>x=\dfrac{-1}{2}\)
Đặt \(-6x^2+3x+3=0\)
\(\Leftrightarrow-6x^2+6x-3x+3=0\)
\(\Leftrightarrow-6x\left(x-1\right)-3\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{2}\end{matrix}\right.\)
TÌM GTNN CỦA BT SAU: A=6x/x-1/+/3x-2/+2x
Giai ho minh. Cam on truoc nhaa! ^^
1. Tìm x để 6x2 +7x-8 đạt GTNN
2. Tìm GTLN của x thỏa mãn x+√3+3x2-9=0
3. GTLN: -x2-3x+9
1/ 0, 71
2/ Tương tự 2 câu 1, 3 nhé!
3/ 11,25
Tick đúng nha! Thanks!