chứng minh rằng n/n+1 tối giản mà n thuộc n, n khác 0
chứng minh phân số n/n+1 tối giản; (n thuộc N và n khác 0)
Gọi d là ƯC của n và n+1
=> n chia hết cho d và n+1 chia hết cho d
=> (n+1)-n chia hết d
=> 1 chia hết cho d
=> n/n+1 là p/s tối giản
b;Gọi ƯCLN (n;n+1) là :d
ta có :n chia hết cho d;n+1 chia hết cho d
=> n+1 - n chia hết cho d
=> 1 chia hết cho d
=>1=d
vậy \(\frac{n}{n+1}\) là phân số tối giản
Chứng minh phân số n/ n+1 tối giản ( n thuộc N và n khác 0 )
b;Gọi ƯCLN (n;n+1) là :d
ta có :n chia hết cho d;n+1 chia hết cho d
=> n+1 - n chia hết cho d
=> 1 chia hết cho d
=>1=d
vậy \(\frac{n}{n+1}\)là phân số tối giản
Giải:
Gọi ƯCLN (n;n+1) là :d
Ta có :n chia hết cho d;n+1 chia hết cho d
=> n+1 - n chia hết cho d
=> 1 chia hết cho d
=>1=d
vậy n/n+1 là phân số tối giản.
Chúc bạn học tốt^_^
Gọi d là ƯCLN của n và n+1
Ta có: n và n +1 chia hết cho d
=> ( n+1)-n chia hết cho d
=> 1 chia hết cho d
=> d = 1
Vậy phân số n/n+1 tối giản
a/ Cho biểu thức A = 5/n-1; (n thuộcZ)
b/ Chứng minh phân số n/n+1 tối giản;(n thuộc N và N khác 0)
c*/ Chứng tỏ rằng: 1/1.2+1/2.3+1/3.4+...+1/49.50 < 1
Câu a: Không hỏi nên không trả lời
Câu b:Gọi d là ƯCLN của n và n+1
Ta có: n chia hết cho d
n+1 chia hết cho d
=>(n+1)-n chia hết cho d
=>1 chia hết cho d
=>d=1
Vậy phân số n/n+1 là phân số tối giản
Câu c: \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
=\(1-\frac{1}{50}\)
Vì: \(1-\frac{1}{50}\)<\(1\)
Vậy:\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)<\(1\)
Chứng minh :M=2n+1/n(n thuộc Z;n khác 0)là phân số tối giản
Gọi \(\left(2n+1,n\right)\) là \(d\).
Vì \(\left(2n+1,n\right)\) là \(d\)
\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\n⋮d\end{cases}}\)
\(\Rightarrow\left(2n+1\right)-n⋮d\)
\(\Rightarrow\left(2n+1\right)-2n⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow\left(2n+1,n\right)=1\)
\(\Rightarrow2n+1\)và \(n\)là 2 SNT cùng nhau
\(\Rightarrow\)Phân số \(\frac{2n+1}{n}\)tối giản (đpcm)
Đặt: ( 2n + 1 ; n ) = d
=> ( 2n + 1 - n ; n ) = d
=> (n + 1; n ) = d
=> ( n + 1 - n ; n ) = d
=> (1; n ) = d
=> d = 1
Như vậy: ( 2n + 1; n ) = 1 => 2n + 1; n là hai số nguyên tố cùng nhau
=> M là phân số tối giản
a) Tính nhanh : A = 2/2.3 + 2/5.7 + ...... +2/97. 99
b) Chứng minh rằng mọi phân số có dạng n/n+1 ( với n thuộc N , n khác 0 ) đều là phân số tối giản
b)goi d la UC(n;n+1)
suy ra n chia het cho d (1)
suy ra n+1 chia het cho d (2)
tu (1) va (2) suy ra n-(n+1) chia het cho d
suy ra n-n-1 chia het cho d
suy ra -1 chia het cho d
suy ra d=-1 hoac 1
suy ra UC (n;n+1)=1 hoac -1
suy ra n/n+1 la phan so toi gian
Chứng tỏ rằng 5n+18/2n+7 tối giản với n thuộc, n khác 0
Bội chung nhỏ nhất của 5 và 2 là
\(5=5\)
\(2=2\)
\(\Rightarrow BCNN\left(5,2\right)=5.2=10\)
\(10:5=2;10:2=5\)
\(\left(5n+18\right).2=10n+36\)
\(\left(2n+7\right).5=10n+35\)
\(\frac{10n+36}{10n+35}=\frac{36}{35}\)
VÌ\(\frac{36}{35}\)Là phân số tối giản nên :
\(\frac{5n+18}{2n+7}\)Là phân số tối giản
Để \(\frac{5n+18}{2n+7}\)tối giản thì ƯCLN (5n + 18,2n + 7)=1
Gọi d là ƯCLN 5n + 18 và 2n + 7
=) 5n + 18 : d và 2n + 7 : d
(=) [ 2.(5n + 18) - 5.(2n + 7)] : d
(=) [(10n + 36 ) - (10n + 35)] : d
(=) (10n + 36 - 10n - 35 ) : d
=) 1 : d
=) n thuộc Ư(1) = 1
Hay ƯCLN (5n + 18;2n + 7) =1
Vậy n = 1 thì phân số \(\frac{5n+18}{2n+7}\)tối giản
- Học Tốt -
a) Tìm số tự nhiên n để phân số M= n-1/n-2( n thuộc Z, n khác 2) là phân số tối giản
b) Chứng minh rằng với mọi số tự nhiên n, A = 2n+1/2n+3 là phân số tối giản
chứng minh phân số 2n+1 / 2n(n+1) ( n thuộc STN khác 0 ) là phân số tối giản
Gọi d là UWCLN(2n+1,2n(n+1))=1
\(\Rightarrow\hept{\begin{cases}2n+1⋮d\Rightarrow n\left(2n+1\right)⋮d\Rightarrow2n^2+n⋮d\\2n\left(n+1\right)⋮d\Rightarrow2n^2+2n⋮d\end{cases}}\)
\(\Rightarrow\left(2n^2+2n\right)-\left(2n^2+n\right)⋮d\Rightarrow2n⋮d\)
Mà\(2n+1⋮d\)
\(\Rightarrow\left(2n+1\right)-2n⋮d\Rightarrow1⋮d\Rightarrow d=1\)
Suy ra 2n+1 và 2n(n+1) nguyên tố cùng nhau hay phân số 2n+1/2n(n+1) tồi giản(đpcm)
Chứng minh rằng với mọi số tự nhiên n khác 0 thì các phân số sau là phân số tối giản n+1/n
Gọi d=ƯCLN(n+1;n)
=>\(\left\{{}\begin{matrix}n+1⋮d\\n⋮d\end{matrix}\right.\)
=>\(n+1-n⋮d\)
=>\(1⋮d\)
=>d=1
=>ƯCLN(n+1;n)=1
=>\(\dfrac{n+1}{n}\) là phân số tối giản