cho tam giác ABC vuông tại A , AB=5,BC=9 . Các tia phân giác cua góc B và C cắt nhau tai I.Tính IC
Cho tam giác ABC vuông tại C. Tia phân giác của góc A và tia phân giác của góc B cắt BC tại D, cắt AC tại E. Từ D và E kẻ các đường vuông góc với AB và cắt AB tại M và N. Tính số đo MCN. Giup em với mọi người
cho tam giác ABC vuông tại A. Kẻ AH vuông góc với BC, các tia phân giác của các góc AHC và góc HAC cắt nhau tại I.Tia phân giác của góc HAB cắt BC ở D.CMR:CI đi qua trung điểm của AD
Cho tam giác ABC vuông tại A, đường phân giác của góc B cắt AC tại H, kẻ HE vuông góc với BC, EH và AB cắt nhau tại I
a) Tam giác ABH = tam giác EBH
b) Cmr BH là đường trung trực của AE
c) Cm BH vuông góc với IC. Hỏi tam giác IBC là tam giác gì?
cho tam giác ABC vuông tại C . Tia phân giác góc A và phân giác góc B, cắt BC tại D và AC tại E, từ D và E vẽ các đường vuông góc với AB tại M và N . tính số đo góc MCN
Cho tam gác ABC vuông tại A vẽ AH vuông góc với BC tia phân giác của góc BAH cắt BC tại D .a) tam giác ABD cân ; b)các tia phân giác của góc BAH và góc BHA cắt nhau tại I gọi M là trung điểm của AD: 3 điểm B;I;M thẳng hàng
cho tam giác ABC . Có các tia phân giác của góc B va góc C cắt nhau tại O và cắt các cạnh AC , AB lần lượt tại E,F . Biết góc BOC = 120 độ . CMR BF+CE=BC
bai.................kho..................wa..............troi...................thi....................lanh..................tich................ung..................ho.....................minh..................nha................ret.................wa..................troi............thi.................mua.......................vua..............di...............hoc.....................ve.....................uot................lanh...............wa
Cho tam giác ABC, A=alpha, phân giác góc B và C cắt nhau tại I, phân giác góc ngoài đỉnh B và C cắt nhau tại K, phân giác góc ngoài đỉnh B và góc C cắt nahu tại K, phân giác góc B cắt phân giác góc ngoài đỉnh C tại E. Tính góc BIC và các góc của tam giác BEK
Cho tam giác ABC. Các tia phân giác của góc B và C cắt nhau tại I. Các tia phân giác của các góc ngoài đỉnh B và C cắt nhau tại K. Chứng minh:
a, Góc BIC = 90o + góc A : 2
b, Góc BKC = 90o - góc A : 2
a) Góc BIC = 180o - (góc IBC + ICB) (1)
+) Ta có có IBC = góc ABC/2 (vì BI là p.g của góc ABC); góc ICB = ACB/2 (vì CI là p/g của góc ACB)
=> góc IBC + ICB = góc (ABC + ACB)/2 = (180o - góc BAC)/2
(1) => góc BIC = 90o + (góc BAC/2)
b) góc BKC = 180o - (góc B2 + C2)
+) góc B2 = B1 = góc ABx/ 2= (180o - ABC)/2
+) góc C2 = góc C1 = góc ACy/2 = (180o - ACB)/2
=> góc B2 + C2 = (360o - ABC - ACB)/2 = (360o - 180o + BAC)/2 = (180o + BAC)/2
(2) => góc BKC = 90o - (BAC/2)
Cho tam giác vuông cân ABC (AB=AC), tia phân giác của các góc B và C cắt AC và AB lần lượt tại E và D.
Từ A và D vẽ các đường thẳng vuông góc với BE, các đường thẳng này cắt BC lần lượt ở K và H. Chứng minh rằng KH=KC
a, △ABE=△ACD (g.c.g) vì AB=AC;A^ chung; ABE^=ACD^=4502
⇒BE=CD;AE=AD;AEB^=ADC^
b, △BDI=△CEI (g.c.g) vì BD=EC(=AB−AD);BDI^=IEC^(=1800−BEA^);ABE^=ACD^=4502
⇒ID=IE
△ADI=△AEI (c.g.c) vì AD=AE;ADC^=AEB^;ID=IE
⇒DAI^=EAI^=9002=450
△AMC có CAM^=MCA^=450⇒△AMC vuông cân tại M.
Chứng minh tương tự có △AMB vuông cân tại M.
c, Gọi F là giao điểm của BE và AK.
△BAF=△BKF (g.c.g) vì BFA^=BFK^=900;BF chung ABF^=KBF^=4502
⇒AB=BK
Chứng minh tương tự có ⇒BD=BH ⇒HK=AD(1)
△ABE=△KBE (c.g.c) vì AB=BK;ABE^=KBE^=4502;BE chung.
⇒AE=EK;BKE^=BAE^=900
⇒EK⊥BC hay △EKC vuông cân tại K⇒KC=KE=AE=AD(2)
Từ (1) và (2) ⇒HK=CK