Tìm n nguyên để biểu thức có giá trị nguyên
A=3n+1/n+1 (với khác -1 )
Cho biểu thức A=3n-2/n-1 với khác 1 ,n thuộc Z. Tìm các giá trị của n để A là số nguyên
\(A=\frac{3n-2}{n-1}=\frac{3n-3+2}{n-1}=\frac{3.\left(n-1\right)+1}{n-1}=3+\frac{1}{n-1}\)
Để A là số nguyên thì n - 1 là ước nguyên của 1
\(n-1=1\Rightarrow n=2\)
\(n-1=-1\Rightarrow n=0\)
Ai thấy đúng thì ủng hộ nha !!!
Ta có A= 3n-2/ n-1 = 3n-3+1/ n-1 = 3(n-1)/n-1 + 1/n-1 = 3+ 1/n-1
để A thuộc Z = > 3 + 1/n-1 thuộc z => 1/n-1 thuộc Z => 1 chia hết cho n-1 => (n-1) thuộc Ư(1)
=> n-1 thuộc {-1;1}
=> n thuộc {0; 2}
tìm n nguyên để biểu thức có giá trị nguyên
A=3n+1/n+1
Để biểu thức A có giá trị nguyên thì 3n + 1\(⋮\)n + 1
Ta có :
3n + 1 \(⋮\)n + 1
\(\Leftrightarrow\)3(n + 1) - 3 + 1 \(⋮\)n + 1
\(\Leftrightarrow\)- 2 \(⋮\)n + 1
\(\Leftrightarrow\)n + 1 \(\in\)Ư(- 2) = {\(\pm\)1 ; \(\pm\)2}
\(\Leftrightarrow\)n \(\in\){ 0 ; - 2 ; 1 ; - 3}
Tìm n có giá trị nguyên để biểu thức có giá trị nguyên : A=2n-3/3n-1
Để A nguyên => 3A nguyên
Khi đó \(3A=\frac{6n-9}{3n-1}=\frac{6n-2-7}{3n-1}=\frac{2\left(3n-1\right)-7}{3n-1}=2-\frac{7}{3n-1}\)
Vì \(2\inℤ\Rightarrow\frac{-6}{3n-1}\inℤ\Rightarrow-7⋮3n-1\Rightarrow3n-1\inƯ\left(-7\right)\)
=> \(3n-1\in\left\{1;7;-1;-7\right\}\)
=> \(3n\in\left\{2;8;0;-6\right\}\)
Vì n nguyên => \(3n\in\left\{0;-6\right\}\Rightarrow n\in\left\{0;-2\right\}\)
Vậy n \(\in\left\{0;-2\right\}\)
Cho biểu thức A=\(\frac{3n+1}{n+1}\)(n thuộc Z, n khác -1)
a) Tìm giá trị của n để A có giá trị là số nguyên
b) Chứng minh rằnga là phân số tối giải với mọi giá trị của n
a, với n thuộc Z
Để A là một số nguyên thì 3n + 1 chia hết cho n+1
mà n + 1 chia hết n +1
=> (3n+1) - 3. (n+1) chia hết cho n+1
<=> (3n+1)-( 3n +3) chia hết cho n+1
<=> 4 chia hết cho n+1
=> n+1 thuộc Ư(4)= {+-1; +-4; +-2}
nếu ............
tìm các giá trị nguyên của n để giá trị của biểu thức \(A=\dfrac{2n^2+3n+3}{2n-1}\) có giá trị là số nguyên
Để A là số nguyên thì 2n^2-n+4n-2+5 chia hết cho 2n-1
=>\(2n-1\in\left\{1;-1;5;-5\right\}\)
=>\(n\in\left\{1;0;3;-2\right\}\)
`2n^2+3n+3 | 2n-1`
`-` `2n^2-n` `n+2`
------------------
`4n+3`
`-` `4n-2`
------------
`5`
`<=> (2n^2+3n+3) : (2n-1)=5`
`<=> 5 ⋮ (2n-1)=> 2n-1 ∈ Ư(5)`\(=\left\{1,5\right\}\)
`+, 2n-1=1=>2n=2=>n=1`
`+, 2n-1=-1=>2n=0=>n=0`
`+, 2n-1=5=>2n=6=>n=3`
`+,2n-1=-5=>2n=-4=>n=-2`
vậy \(n\in\left\{1;0;3;-2\right\}\)
Tìm các giá trị nguyên n để biểu thức sau nhận giá trị nguyên 3n+1/3n-4
\(\dfrac{3n+1}{3n-4}\left(n\in Z\right)\\ =\dfrac{3n-4+5}{3n-4}=1+\dfrac{5}{3n-4}\)
Để biểu thức đạt gt nguyên thì : \(\dfrac{5}{3n-4}\in Z\)
\(=>3n-4\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\\ =>3n\in\left\{5;3;9;-1\right\}\\ =>n\in\left\{\dfrac{5}{3};1;3;-\dfrac{1}{3}\right\}\)
Do n nguyên -> Kết luận : \(n\in\left\{1;3\right\}\)
\(\dfrac{3n+1}{3n-4}\) \(=\dfrac{3n-4+5}{3n-4}\) \(=1+\dfrac{5}{3n-4}\)
Để biểu thức nhận giá trị nguyên thì \(5⋮\left(3n-4\right)\)
\(\Rightarrow\left(3n-4\right)\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
\(3n-4\) | \(-5\) | \(-1\) | \(1\) | \(5\) |
\(n\) | \(-\dfrac{1}{3}\) | \(1\) | \(\dfrac{5}{3}\) | \(3\) |
Vậy \(x=1\) hoặc \(x=3\) thì biểu thức \(\dfrac{3n+1}{3n-4}\) nhận giá trị nguyên
A = \(\dfrac{3n+1}{3n-4}\) (đkxđ n \(\ne\) \(\dfrac{4}{3}\))
A \(\in\) Z ⇔ 3n + 1 ⋮ 3n - 4 ⇔ 3n - 4 + 5 ⋮ 3n - 4 ⇔ 5 ⋮ 3n - 4
⇔ 3n - 4 \(\in\) { - 5; -1; 1; 5} ⇔ n \(\in\) { - \(\dfrac{1}{3}\); 1; \(\dfrac{5}{3}\); 3}
Vì n \(\in\) Z nên n \(\in\) { 1; 3}
Tìm giá ttrị nguyên của n:
a) để giá trị cuả biểu thức 3n^3 + 10n^2 - 5 chia hết cho giấ trị của biểu thưc 3n+1
b) để giá trị cuẩ biểu thức 10n^2 + n - 1- chiaa hêts cho giá trị của biểu thức n- 1
tìm số nguyên n để biểu thức: A=-5 phần n-1 có giá trị nguyên với n khác 1
Để A = -5/n-1 là số nguyên <=> - 5 ⋮ n - 1
=> n - 1 ∈ Ư ( - 5 ) = { - 5 ; - 1 ; 1 ; 5 }
=> n - 1 = { - 5 ; - 1 ; 1 ; 5 }
=> n = { - 4 ; 0 ; 2 ; 6 }
A= \(\frac{-5}{n-1}\) nguyên
-5 chia hết cho n - 1
n - 1 thuộc U(-5) = {-5 ; - 1 ; 1 ; 5}
n - 1= -5 => n = -4
n - 1 = -1 => n = 0
n - 1 = 1 => n = 2
n - 1 = 5 => n = 6
Vậy n thuộc {-4 ; 0 ; 2 ; 6}
\(A=\frac{-5}{n-1}\)
Để -5/ n-1 có giá trị nguyên thì -5 chia hết cho n-1 nên \(n-1\inƯ\left(-5\right)=\left\{-1;1;-5;5\right\}\)
Ta có bảng:
n-1 | -1 | 1 | -5 | 5 |
n | 0 | 2 | -4 | 6 |
Vậy n thuộc {0;2;-4;6}
Tìm các giá trị nguyên của n thỏa mãn để biểu thức\(A=\frac{3n+4}{n-1}\)có giá trị là số nguyên.
Để phân số trên thỏa mãn điều kiện thì:
3n+4 chia hết cho n-1
3n+4=3n-3+7
=3.(n-1)+7
Vì 3.(n-1) chia hết cho n-1 nên 7 phải chia hết cho n-1
n-1 thuộc +-1;+-7
Thử các trường hợp ra,ta có:
n thuộc:0;2;8;-6.
Chúc em học tốt^^
Để phân số trên thỏa mãn điều kiện thì:
3n+4 chia hết cho n-1
3n+4=3n-3+7
=3.(n-1)+7
Vì 3.(n-1) chia hết cho n-1 nên 7 phải chia hết cho n-1
n-1 thuộc +-1;+-7
Thử các trường hợp ra,ta có:
n thuộc:0;2;8;-6.
Để A nguyên thì 3n + 4 chia hết cho n - 1
=> 3n - 3 + 7 chia hết cho n - 1
=> 3.(n - 1) + 7 chia hết cho n - 1
Do 3.(n - 1) chia hết cho n - 1 => 7 chia hết cho n - 1
=> n - 1 thuộc {1 ; -1; 7 ; -7}
=> n thuộc {2 ; 0 ; 8 ; -6}