Chứng minh rằng:
n.(2n-3)-2n.(n+1) chia hết cho 5 với mọi n thuộc Z
làm nhanh giúp mk vs
n(2n-3)-2n(n+1)
=2n^2-3n-2n^2-2n
=-5n
-5n chia hết cho 5 vs mọi số nguyên n vì -5 chia hết cho 5
vậy n(2n-3)-2n(n+1) chia hết cho 5
k mk nhak
Thanks <3
Chứng minh rằng với mọi n thuộc Z thì:
a) n (2n - 3) - 2n (n + 1) chia hết cho 5
b) (n-1) (n+4) - (n-4) (n+1) chia hết cho 6
a, Chứng minh rằng với mọi m thuộc Z ta luôn có m3 - m chia hết cho 6 .
b, Chứng minh rằng với mọi n thuộc Z ta luôn có ( 2n - 1 ) - 2n + 1 chia hết cho 8
a) Ta có: m^3-m = m(m^2-1^2) = m.(m+1)(m-1) là tích của 3 số nguyên liên tiếp
=> m(m+1)(m-1) chia hết cho 3 và 2
Mà (3,2) = 1
=> m(m+1)(m-1) chia hết cho 6
=> m^3 - m chia hết cho 6 V m thuộc Z
b) Ta có: (2n-1)-2n+1 = 2n-1-2n+1 = 0-1+1 = 0 luôn chia hết cho 8
=> (2n-1)-2n+1 luôn chia hết cho 8 V n thuộc Z
Tick nha pham thuy trang
a, m3 - m = m( m2 - 12) = m(m - 1 ) ( m + 1) => 3 số nguyên liên tiếp : hết cho 6
mk chỉ biết có thế thôi
công thanh sai rồi số nguyên chứ đâu phải số tự nhiên
Chứng minh rằng: n2.(n+1)+2n.(n+1) luôn chia hết cho 6 với mọi n thuộc Z
n^2.(n+1) + 2n.(n+1)
=(n+1). (n^2 + 2n)
= (n+1).n.(n+2) chia hết cho 6 (tích 3 số tự nhiên liên tiếp chia hết cho 6)
n2.(n + 1) + 2n.(n + 1) = (n2 + 2n)(n + 1) = n(n + 1)(n + 2)
Vì n(n + )(n + 2) là tích của 3 số nguyên liên tiếp nên có 1 số chia hết cho 2, 1 số chia hết cho 3.
=> Tích n(n + 1)(n + 2) chia hết cho 2 và 3.
Mà (2,3) = 1
=> n(n + 1)(n + 2) chia hết cho 6
=> n2.(n+1)+2n.(n+1) chia hết cho 6
Chứng minh rằng:
n2.(n+1)+2n.(n+1) luôn chia hết cho 6 với mọi n thuộc Z
Chứng minh rằng:
a, n(2n-3) - 2n(n+1) chia hết cho 5 với mọi n thuộc Z
b, (n-1)(3-2n) - n(n+5) chia hết cho 3 với mọi n thuộc N
a) \(n\left(2n-3\right)-2n\left(n+1\right)\)
\(=2n^2-3n-2n^2-2n\)
\(=-5n\)\(⋮\)\(5\)
b) \(\left(n-1\right)\left(3-2n\right)-n\left(n+5\right)\)
\(=3n-2n^2-3+2n-n^2-5n\)
\(=-3n^2-3\)
\(=-3\left(n^2+1\right)\)\(⋮\)\(3\)
tìm n thuộc N,chứng minh rằng:
a,(n+10)(n+15)chia hết cho 2
b,n(n+1)(2n+1)chia hết cho 6
c,n(2n+1)(7n+1)chia hết cho 6 (với mọi n thuộc N)
a; (n + 10)(n + 15)
+ Nếu n là số chẵn ta có: n + 10 ⋮ 2 ⇒ (n + 10)(n + 15) ⋮ 2
+ Nếu n là số lẻ ta có: n + 15 là số chẵn
⇒ (n + 15) ⋮ 2 ⇒ (n + 10)(n + 15) ⋮ 2
Từ những lập luận trên ta có:
A = (n + 10)(n + 15) ⋮ 2 ∀ n \(\in\) N
Chứng minh rằng :
a) n .(2n - 3) - 2n .( n+1 ) chia hết 5 với n thuộc Z
b) (n-1) . ( n+4 ) - ( n-4 ) . (n+1 ) chia hết cho 6 với n thuộc Z
a)\(n\left(2n-3\right)-2n\left(n+1\right)=n\left(2n-3\right)-n\left(2n+2\right)=n\left(2n-3-2n-2\right)\)
\(=n\left(-5\right)=-5n\) chia hết cho 5 với n thuộc Z
b)\(\left(n-1\right)\left(n+4\right)-\left(n-4\right)\left(n+1\right)=\left(n^2+3n-4\right)-\left(n^2-3n-4\right)\)
\(=n^2+3n-4-n^2+3n+4=6n\) chia hết cho 6 với n thuộc Z
Chứng minh rằng:
n^2( n + 1) + 2n( n + 1) luôn chia hết cho 6
Với mọi n thuộc Z
Ta có : n2(n + 1) + 2n(n + 1)
= n(n + 1)(n + 2)
VÌ n(n + 1)(n + 2) là 3 số tự nhiên liên tiếp nên luôn luôn có 1 số chia hết cho 2
=> n(n + 1)(n + 2) chia hết cho 2
Vì n(n + 1)(n + 2) là 3 số tự nhiên liên tiếp nên luôn luôn có 1 số chia hết cho 3
Vậy n(n + 1)(n + 2) chia hết cho 6 (đpcm)