cho tam giác ABC,trung tuyến AM.Từ A kẻ đường vuông góc AH đến BC.Trên tia đối HA,MA lần lượt lấy các điểm E,F sao cho HA=HE,MA=ME.Cm:BE=CF
Cho tam giác ABC, trung tuyến AM. Từ A kẻ đường vuông góc AH đến BC. Trên tia đối của tia HA, MA lần lượt lấy các điểm E,F sao cho HA=HE, MA=MF. Cm: BE=CF
Cho tam giác ABC, trung tuyến AM. Từ A kẻ đường vuông góc AH đến BC. Trên tia đối của tia HA, MA lần lượt lấy điểm E,F sao cho HA=HE, MA=MF. CM: BE=CF
em chưa học chị ui, chị thông cảm nha
xet tam giac abe co : bh la duong cao va la duong trung tuyen (gt suy ra abe la tam giac can tai b , ab=be (1) xet tam giac amb va fmc co am=mf (gt) bm=mc(gt) goc amb = goc fmc (doi dinh) suy ra tam giac amb = tam giac fmc (cgc) , ab = cf (2) tu 1 va 2 suy ra be=cf
cho tam giác nhon ABC có M là trung điểm BC,kẻ AH vuông góc BC.Trên tia đối của tia HA lấy điểm E sao choHE=HA.trên tia đối của tia MA lấy điểm F sao cho MF=MA.chứng minh rằng
a)BE=CF
b)ME=MF
Cho tam giác ABC, kẻ AH vuông góc với BC tại H. Gọi M là trung điểm của BC, trên tia đối của MA lấy điểm F sao cho MA = MF, trên tia đối của HA lấy điểm E sao cho HE = HA. Chứng minh rằng:
a) BE = CF
b) Tam giác AEF là tam giác vuông
Câu hỏi của Wanna One BTS is my everything - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo tại câu tương tự bên trên.
cho tam giác ABC với đường trung tuyến AM. Từ A vẽ đường vuông góc AH đến đường thẳng BC. Trên tia đối của tia HA và MA lần lượt lấy các điểm E, F sao cho HA = HE; MA=MF. Chứng minh 2 đoạn thẳng BE và CF bằng nhau
Xét ΔABE có
BH la đường cao
BH là đường trung tuyến
Do đó: ΔABE cântại B
=>BA=BE(1)
Xét tứ giác ABFC có
M là trug điểm của AF
M là trung điểm của BC
Do đó: ABFC là hình bình hành
Suy ra: AB=FC(2)
Từ (1) và (2) suy ra BE=CF
cho tam giác ABC (AB<AC)M là trung điểm của BC.Trên tia đối của tia MA lấy điểm E sao cho AM = EM
a.Cm tam giác AMB = tam giác MCE
b. Từ A kẻ AH vuông góc với BC. Trên tia đối của tia HA lấy điểm D sao cho HA= HD. Cm CE = BD
c. tam giác AMD là tam giác gì? vì sao?
#\(N\)
`a,` Xét Tam giác `AMB` và Tam giác `CME` có:
`AM = ME (g``t)`
\(\widehat{AMB}=\widehat{CME}\) `(2` góc đối đỉnh `)`
`MB = MC (g``t)`
`=>` Tam giác `AMB =` Tam giác `CME (c-g-c)`
`b,` Vì Tam giác `AMB =` Tam giác `CME (a)`
`-> AB = CE (2` cạnh tương ứng `)`
Xét Tam giác `ABH` và Tam giác `DBH` có:
`HA = HD (g``t)`
\(\widehat{BHA}=\widehat{BHD}=90^0\)
`BH` chung
`=>` Tam giác `ABH =` Tam giác `DBH (c-g-c)`
`=> AB = BD (2` cạnh tương ứng `)`
Mà `AB = CE -> BD = CE`
`c,` Xét Tam giác `AMH` và Tam giác `DMH` có:
`HA = HD (g``t)`
\(\widehat{AHM}=\widehat{DHM}=90^0\)
`HM` chung
`=>` Tam giác `AMH =` Tam giác `DMH (c-g-c)`
`=> AM = DM (2` cạnh tương ứng `)`
Xét Tam giác `AMD` có: `AM = DM`
`->` Tam giác `AMD` là tam giác cân.
a: Xét ΔMAB và ΔMEC có
MA=ME
góc AMB=góc EMC
MB=MC
=>ΔMAB=ΔMEC
b: Xét ΔBAD có
BH vừa là đường cao, vừa là trung tuyến
nên ΔBAD cân tại B
=>BA=BD=CE
c: Xét ΔMAD có
MH vừa là đường cao, vừa là trungtuyến
nên ΔMAD cân tại M
Cho tam giác ABC (AB < AC), kẻ trung tuyến AM, AH vuông góc với BC (H thuộc BC), trên tia đối của tia MA lấy điểm E sao cho ME=MA, trên tia đối của tia HA lấy điểm F sao cho HF=HA. Chứng minh:
a) Tam giác ABM= tam giác ECM
b) BF=CE
c) Góc ACM < góc MCE
a) Xét ΔMAB và ΔMEC có
MA=ME(gt)
ˆAMB=ˆEMCAMB^=EMC^(hai góc đối đỉnh)
MB=MC(M là trung điểm của BC)
Do đó: ΔMAB=ΔMEC(c-g-c)
Có thể vẽ thêm hình không ạ
a) Xét ΔABM và ΔFCM có
AM=FM(gt)
\(\widehat{AMB}=\widehat{FMC}\)(hai góc đối đỉnh)
BM=CM(M là trung điểm của BC)
Do đó: ΔABM=ΔFCM(c-g-c)
b) Xét ΔBMF và ΔCMA có
BM=CM(M là trung điểm của BC)
\(\widehat{BMF}=\widehat{CMA}\)(hai góc đối đỉnh)
FM=AM(gt)
Do đó: ΔBMF=ΔCMA(c-g-c)
nên \(\widehat{FBM}=\widehat{ACM}\)(hai góc tương ứng)
mà \(\widehat{FBM}\) và \(\widehat{ACM}\) là hai góc ở vị trí so le trong
nên BF//AC(Dấu hiệu nhận biết hai đường thẳng song song)
Ta có: ΔABM=ΔFCM(cmt)
nên \(\widehat{ABM}=\widehat{FCM}\)(hai góc tương ứng)
mà \(\widehat{ABM}\) và \(\widehat{FCM}\) là hai góc ở vị trí so le trong
nên AB//CF(Dấu hiệu nhận biết hai đường thẳng song song)
Cho tam giác ABC . Kẻ trung tuyến AM. Trên tia đối của tia MA lấy điểm E sao cho ME = MA a)Cm tam giác ABM = tam giác ECM b)Kẻ AH vuông góc với BC. Trên tia đối của tia HA lấy điểm D sao cho HD = HA Chứng minh BC là tia phân giác của góc ABD và BD = CE c) Hai đường thẳng BD và CE cắt nhau tại K . Chứng Minh Tam góc BCK cân
Diễn giải:
- Khi cộng, trừ số thập phân ta tiến hành cộng hoặc trừ các phần tương ứng của các số đó.
Ví dụ 1:
Tính 0,25 + 2,5 ta làm như sau: 5 + 0 = 5 , 2 + 5 =7, 0 + 2 = 2. Vậy 0,25 + 2,5 = 2.75
Tính 8,6 - 2,7 ta làm như sau: 6 - 7 không trừ được ta lấy 16 - 7 = 9, tiếp tục 8 - 2 trừ thêm 1 nữa tức là 8 -3 = 5. Vậy 8,6 - 2,7 = 5,9
- Với phép nhân, chia các số thập phân ta cần viết chúng dưới dạng phân số.
tam giác này là tam giác vuông hay gì thế ak