Rút gọn phân số sau: a, 2x-2y/x 2-2xy
b, x 2-xy/ y2 -x2
Bài 1. Rút gọn các biểu thức sau.
a) (x + 2y)(x2 - 2xy + 4y2) – (x - y)(x2 + xy + y2)
b) (x + 1)(x - 1)2 – (x + 2)(x2 - 2x + 4)
a) Ta có: \(\left(x+2y\right)\left(x^2-2xy+4y^2\right)-\left(x-y\right)\left(x^2+xy+y^2\right)\)
\(=x^3+\left(2y\right)^3-\left(x^3-y^3\right)\)
\(=x^3+8y^3-x^3+y^3\)
\(=9y^3\)
b) Ta có: \(\left(x+1\right)\left(x-1\right)^2-\left(x+2\right)\left(x^2-2x+4\right)\)
\(=\left(x+1\right)\left(x^2-2x+1\right)-\left(x+2\right)\left(x^2-2x+4\right)\)
\(=x^3-2x^2+x+x^2-2x+1-\left(x^3+8\right)\)
\(=x^3-x^2-x+1-x^3-8\)
\(=-x^2-x-7\)
Bài 1: Rút gọn các biểu thức:
a. (2x - 1)2 - 2(2x - 3)2 + 4
b. (3x + 2)2 + 2(2 + 3x)(1 - 2y) + (2y - 1)2
c. (x2 + 2xy)2 + 2(x2 + 2xy)y2 + y4
d. (x - 1)3 + 3x(x - 1)2 + 3x2(x -1) + x3
e. (2x + 3y)(4x2 - 6xy + 9y2)
f. (x - y)(x2 + xy + y2) - (x + y)(x2 - xy + y2)
g. (x2 - 2y)(x4 + 2x2y + 4y2) - x3(x – y)(x2 + xy + y2) + 8y3
a: \(\left(2x-1\right)^2-2\left(2x-3\right)^2+4\)
\(=4x^2-4x+1+4-2\left(4x^2-12x+9\right)\)
\(=4x^2-4x+5-8x^2+24x-18\)
\(=-4x^2+20x-13\)
e: \(\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)=8x^3+27y^3\)
Bài 1: Rút gọn các biểu thức:
a. (2x - 1)2 - 2 (2x - 3)2 + 4
b. (3x + 2)2 + 2 (2 + 3x) (1 - 2y) + (2y - 1)2
c. (x2 + 2xy)2 + 2 (x2 + 2xy) y2 + y4
d. (x - 1)3 + 3x (x - 1)2 + 3x2 (x -1) + x3
e. (2x + 3y) (4x2 - 6xy + 9y2)
f. (x - y) (x2 + xy + y2) - (x + y) (x2 - xy + y2)
g. (x2 - 2y) (x4 + 2x2y + 4y2) - x3 (x – y) (x2 + xy + y2) + 8y3
a: Ta có: \(\left(2x-1\right)^2-2\left(2x-3\right)^2+4\)
\(=4x^2-4x+1-2\left(4x^2-12x+9\right)+4\)
\(=4x^2-4x+5-8x^2+24x-18\)
\(=-4x^2+20x-13\)
b: \(\left(3x+2\right)^2+2\left(3x+2\right)\left(1-2y\right)+\left(1-2y\right)^2\)
\(=\left(3x+2+1-2y\right)^2\)
\(=\left(3x-2y+3\right)^2\)
Bài 3: Rút gọn các biểu thức sau:
A = 3x(x2 – 2x + 3) – x2(3x – 2) + 5(x2 – x)
B = x(x2 + xy + y2) – y(x2 + xy + y2)
\(A=3x^3-6x^2+9x-3x^3+2x^2+5x^2-5x=x^2+4x\\ B=\left(x^2+xy+y^2\right)\left(x-y\right)=x^3-y^3\)
Rút gọn biểu thức: A = ( x – 2 y ) . x 2 + 2 x y + y 2 - ( x + 2 y ) . x 2 – 2 x y + y 2
A. 2 x 3
B. - 16 y 3
C. 16 y 3
D. – 2 x 3
Rút gọn và tính giá trị biểu thức sau:
P=[{x-y/2y-x-x2+y2+y-2/x2-xy-2y2}:4x4+4x2y+y2-4/x2+y+xy+x]
LƯU Ý:đây là phân thức đại số nhé
Bài 1: Rút gọn các biểu thức:
a.(x + 2)2 - (x + 4)2 + x2 - 3x + 1
b.(2x + 2)2 - 4x(x + 2)
c. (2x - 1)2 - 2(2x - 3)2 + 4
d. (3x + 2)2 + 2(2 + 3x)(1 - 2y) + (2y - 1)2
e. (x2 + 2xy)2 + 2(x2 + 2xy)y2 + y4
f. (x - 1)3 + 3x(x - 1)2 + 3x2(x -1) + x3
g. (2x + 3y)(4x2 - 6xy + 9y2)
h. (x - y)(x2 + xy + y2) - (x + y)(x2 - xy + y2)
n. (x2 - 2y)(x4 + 2x2y + 4y2) - x3(x – y)(x2 + xy + y2) + 8y3
a) rút gọn biểu thức\(\dfrac{x^2+3xy+2y^2}{x^3+2x^2y-xy^2-2y^3}\) rồi tính giá trị của biểu thức tại x=5 và y=3
B) phân tích đa thức 2x-2y-x^2+2xy-y^2
B) Ta có: 2x-2y-x2+2xy-y2
⇔ 2(x-y)-(x2-2xy+y2)
⇔ 2(x-y)-(x-y)2
⇔ (x-y)(2-x+y)
Đúng thì tick nhé
(x+1)/x2+2x-3 và (-2x)/x2+7x+10
x-y/x2+xy vÀ 2x-3y/xy2
x-2y/2 và x2+y2/2x-2xy
x+2y/x2y+xy2 và x-yy/x2+2xy+y2
a: \(\dfrac{\left(x+1\right)}{x^2+2x-3}=\dfrac{\left(x+1\right)}{\left(x+3\right)\cdot\left(x-1\right)}=\dfrac{\left(x+1\right)\left(x+2\right)\left(x+5\right)}{\left(x+3\right)\left(x-1\right)\left(x+2\right)\left(x+5\right)}\)
\(\dfrac{-2x}{x^2+7x+10}=\dfrac{-2x}{\left(x+2\right)\left(x+5\right)}=\dfrac{-2x\left(x+3\right)\left(x-1\right)}{\left(x+2\right)\left(x+5\right)\left(x+3\right)\left(x-1\right)}\)
b: \(\dfrac{x-y}{x^2+xy}=\dfrac{x-y}{x\left(x+y\right)}=\dfrac{y^2\left(x-y\right)}{xy^2\left(x+y\right)}\)
\(\dfrac{2x-3y}{xy^2}=\dfrac{\left(2x-3y\right)\left(x+y\right)}{xy^2\left(x+y\right)}\)
c: \(\dfrac{x-2y}{2}=\dfrac{\left(x-2y\right)\left(x-xy\right)}{2\left(x-xy\right)}\)
\(\dfrac{x^2+y^2}{2x-2xy}=\dfrac{x^2+y^2}{2\left(x-xy\right)}\)