tính 2+4+6+8+....+2n=?
Tính nhanh tổng sau
2 + 4 + 6 + 8 + ... + ( 2n - 2 ) +2n
2 + 4 + 6 + 8 + ... + (2n - 2) + 2n
Giải : Khoảng cách giữa hai số hạng liên tiếp là 2 đơn vị
Số số hạng là : (2n - 2) : 2 + 1 = n ( số hạng )
Tổng số hạng là : (2n + 2) . n : 2 = n2 + n
Số số hạng là
(2n-2):2 +1=n
tống số đầu và số cuối là
2n+2=2n+2
tổng sẽ là
n * (2n+2):2= n(n+1)
vậy tổng sẽ là n(n+1)
chúc bạn học tốt nhé
Bài 4: Tính các tổng sau:
a) 1 + 2 + 3 + 4 + ...... + n;
b) 2 +4 + 6 + 8 + .... + 2n;
c) 1 + 3 + 5 + ..... (2n + 1);
d) 1 + 4 + 7 + 10 + ...... + 2005;
e) 2 + 5 + 8 +......+ 2006;
g) 1 + 5 + 9 +....+ 2001.
a) \(1+2+3+4+...+n\)
\(=\left(n+1\right)\left[\left(n-1\right):1+1\right]:2\)
\(=\left(n+1\right)\left(n-1+1\right):2\)
\(=n\left(n+1\right):2\)
\(=\dfrac{n\left(n+1\right)}{2}\)
b) \(2+4+6+..+2n\)
\(=\left(2n+2\right)\left[\left(2n-2\right):2+1\right]:2\)
\(=2\left(n+1\right)\left[2\left(n-1\right):2+1\right]:2\)
\(=\left(n+1\right)\left(n-1+1\right)\)
\(=n\left(n+1\right)\)
c) \(1+3+5+...+\left(2n+1\right)\)
\(=\left[\left(2n+1\right)+1\right]\left\{\left[\left(2n-1\right)-1\right]:2+1\right\}:2\)
\(=\left(2n+1+1\right)\left[\left(2n-1-1\right):2+1\right]:2\)
\(=\left(2n+2\right)\left[\left(2n-2\right):2+1\right]:2\)
\(=2\left(n+1\right)\left[2\left(n-1\right):2+1\right]:2\)
\(=\left(n+1\right)\left(n-1+1\right)\)
\(=n\left(n+1\right)\)
d) \(1+4+7+10+...+2005\)
\(=\left(2005+1\right)\left[\left(2005-1\right):3+1\right]:2\)
\(=2006\cdot\left(2004:3+1\right):2\)
\(=2006\cdot\left(668+1\right):2\)
\(=1003\cdot669\)
\(=671007\)
e) \(2+5+8+...+2006\)
\(=\left(2006+2\right)\left[\left(2006-2\right):3+1\right]:2\)
\(=2008\cdot\left(2004:3+1\right):2\)
\(=1004\cdot\left(668+1\right)\)
\(=1004\cdot669\)
\(=671676\)
g) \(1+5+9+...+2001\)
\(=\left(2001+1\right)\left[\left(2001-1\right):4+1\right]:2\)
\(=2002\cdot\left(2000:4+1\right):2\)
\(=1001\cdot\left(500+1\right)\)
\(=1001\cdot501\)
\(=501501\)
Tính nhanh tổng sau :
2 + 4 + 6 + 8 + .... + ( 2n - 2 ) + 2n
Cần gấp cần gấp
Số sôs hạng
\(\frac{2n-2}{2}+1=\frac{2\left(n-1\right)}{2}+1=n\)
Tổng là
\(\frac{n\left(2n+2\right)}{2}=\frac{2n\left(n+1\right)}{2}=n\left(n+1\right)\)
I.Tính nhanh tổng sau:
1+2+4+8+18+ ... +8192
II. Tính các tổng sau:
1+2+3+4+..+n
2+4+6+8+...+2n
1+3+5+7+...2n+1
1. Đặt A × 2 = 2 + 4 +8 +16 + 32 + ....+ 16384
Cùng thêm 1 và bớt 1 ta có như sau:
A × 2 = 1 + 2 + 4 + 8 + 16 + .....+ 1892 + 16384 -1
A × 2 = A + 16384 - 1
A = 16384 -1
A = 16383
2.
1, đề sai
2,Đây là tổng n số hạng đầu cấp số cộng có công sai d = 2 và u1= 2
=> s = (2+ 2n)* (n/2) <=> s = (1+n)n
3,1+3+5+7+...+ (2n+1) = [1+ (2n+1)] + [3 + (2n - 1)] + .... = [1+ (2n+1)] x [(n+1)/2]
vì 1 + (2n+1) = 3 + (2n-1) =...
Từ 1 đến 2n+1 số có 2n+1 số, trong đó có n số chẵn và n+1 số lẽ, do 1 và 2n+1 là số lẽ mà.
Do đó có (n+1)/2 cặp tất cả
Bài 1 : Tính nhanh tổng sau
1+2+3+4+.....+n ;
1+3+5+7+.....+(2n-1);
2+4+6+8+....+2n
ta tính các tổng theo công thức:
tổng có số các số hạng là: (số đầu - số cuối) : khoảng cách +1
giá trị của tổng: (số đầu+ cuối). số số hạng :2
áp dụng tính
a) số số hạng: (n-1):1+1=n-1
giá trị: \(\left(n+1\right)\left(n-1\right):2=\frac{\left(n^2-1\right)}{2}\)
b) \(=\left(2n-1+1\right).\left(\frac{2n-1-1}{2}+1\right):2=2n\frac{2n}{2}:2=n^2\)
c) \(=\left(2n+2\right)\left(\frac{2n-2}{2}+1\right)=2\left(n+1\right)2n:2=2n\left(n+1\right)\)
đúng rồi đó bn nhưng cách kafm giống lớp 8 quá
Tính
a: 1+ 2 + 3 + 4 + ... + n
b: 2+ 4 + 6+ 8 + ... + 2n
c: 1+ 3 + 5+7 + ...+ [2n+1]
Tính tổng sau:
2+4+6+8+...+2n(n khác 0)
Tính tổng sau hợp lí nhất :
2+4+6+8+...+2n (n khác 0)
2+4+6+8+...+2n
tổng trên có số số hạng là:
(2n-2)/2+1=n ( số hạng )
\(\Rightarrow\)2+4+6+8+...+2n=\(\frac{\left(2n+2\right).n}{2}\)\(=n.\left(n+1\right)\)
P/S: "." là dấu nhân bạn nha
chúc bạn học tốt
2+4+6+8+...+2n
tổng trên có số số hạng là:
(2n-2)/2+1=n ( số hạng )
⇒⇒2+4+6+8+...+2n=(2n+2).n2(2�+2).�2=n.(n+1)
1 Tính tổng sau:
a. 1 + 2 + 3 +4 + ...+ n
b. 2 + 4 + 6 + 8 +...+ 2n
c .1 + 3 + 5 +...+ (2n+1)
d, 1 + 4 + 7 + 10 + ...+ 2008
a) =\(\frac{n\left(n+1\right)}{2}\)
b) =\(n\left(n+1\right)\)
c) =\(\left(n+1\right)^2\)
d) =\(\left(2008+1\right).\left(\frac{2008-1}{3}+1\right):2=673015\)