\(\sqrt{20}\)+\(\sqrt{80}\)-\(\sqrt{45}\)
A = 2\(\sqrt{20}\) + 3\(\sqrt{45}\) - \(\sqrt{80}\)
\(A=2\sqrt{20}+3\sqrt{45}-\sqrt{80}\)
\(A=2\cdot2\sqrt{5}+3\cdot3\sqrt{5}-4\sqrt{5}\)
\(A=4\sqrt{5}+9\sqrt{5}-4\sqrt{5}\)
\(A=9\sqrt{5}\)
a)\(3\sqrt{\sqrt{20}}-2\sqrt{2\sqrt{80}}+2\sqrt{6\sqrt{45}}\)
b)\(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-6\sqrt{20}}}}\)
9) \(\sqrt{20}\) + 2\(\sqrt{45}\) + \(\sqrt{125}\) - 3\(\sqrt{80}\)
10) \(\sqrt{75}\) - \(\sqrt{5\dfrac{1}{3}}\) + \(\dfrac{9}{2}\) \(\sqrt{2\dfrac{2}{3}}\) + 2\(\sqrt{27}\)
9.
\(\sqrt{20}+2\sqrt{45}+\sqrt{125}-3\sqrt{80}\)
\(=2\sqrt{5}+6\sqrt{5}+5\sqrt{5}-12\sqrt{5}\)
\(=-\sqrt{5}\)
10.
\(\sqrt{75}-\sqrt{5\dfrac{1}{3}}+\dfrac{9}{2}\sqrt{2\dfrac{2}{3}}+2\sqrt{27}\)
\(=5\sqrt{3}-\sqrt{5+\dfrac{1}{3}}+\dfrac{9}{2}\sqrt{2+\dfrac{2}{3}}+6\sqrt{3}\)
\(=11\sqrt{3}-\sqrt{\dfrac{16}{3}}+\dfrac{9}{2}\sqrt{\dfrac{8}{3}}\)
\(=11\sqrt{3}-\dfrac{4\sqrt{3}}{3}+3\sqrt{6}\)
\(=\dfrac{29\sqrt{3}}{3}+3\sqrt{6}\)
\(\sqrt{20}+2\sqrt{45}+\sqrt{125}-3\sqrt{80}\\ =2\sqrt{5}+6\sqrt{5}+5\sqrt{5}-12\sqrt{5}=\sqrt{5}\)
\(\sqrt{75}-\sqrt{5\dfrac{1}{3}}+\dfrac{9}{2}\sqrt{2\dfrac{2}{3}}+2\sqrt{27}\\ =5\sqrt{3}-\dfrac{4\sqrt{3}}{3}+3\sqrt{6}+6\sqrt{3}\\ =\dfrac{15\sqrt{3}-4\sqrt{3}+6\sqrt{6}+18\sqrt{3}}{3}\\ =\dfrac{29\sqrt{3}+6\sqrt{6}}{3}\)
Thực hiện phép tính (rút gọn biểu thức)
a)\(\sqrt{20}\)-3\(\sqrt{45}\)-\(\dfrac{1}{2}\sqrt{80}\)
b) 12\(\sqrt{54}\)-\(\dfrac{2}{5}\)\(\sqrt{150}\)+3\(\sqrt{24}\)
Lời giải:
a.
$=2\sqrt{5}-9\sqrt{5}-2\sqrt{5}=(2-9-2)\sqrt{5}=-9\sqrt{5}$
b.
$=36\sqrt{6}-2\sqrt{6}+6\sqrt{6}=(36-2+6)\sqrt{6}=40\sqrt{6}$
\(\sqrt{20}-\sqrt{45+3\sqrt{80}}\)
\(a,\sqrt{20}-\sqrt{45}+3\sqrt{80}\)
b, Tính:\(\left(\sqrt{12}+2\sqrt{27}-3\sqrt{3}\right)\sqrt{3}\)
a)\(\sqrt{20}-\sqrt{45}+3\sqrt{80}\)
= \(2\sqrt{5}-3\sqrt{5}+3.4\sqrt{5}\)
= ( 2 - 3 + 12 )\(\sqrt{5}\)
= 11\(\sqrt{5}\)
b) (\(\sqrt{12}+2\sqrt{27}-3\sqrt{3}\) )\(\sqrt{3}\)
= 6 + 18 - 9
=15
Rút gọn biểu thức
I=(2\(\sqrt{3}\)-5\(\sqrt{27}\)+4\(\sqrt{12}\)):\(\sqrt{3}\)
K=\(\sqrt{125}\)-4\(\sqrt{45}\)+3\(\sqrt{20}\)-\(\sqrt{80}\)
L=2\(\sqrt{9}\)+\(\sqrt{25}\)-5\(\sqrt{4}\)
N=2\(\sqrt{32}\)-5\(\sqrt{27}\)-4\(\sqrt{8}\)+3\(\sqrt{75}\)
O=2\(\sqrt{3.5^2}\)-3\(\sqrt{3.2^2}\)+\(\sqrt{3.3^2}\)
\(I=\left(2\sqrt{3}-5\sqrt{27}+4\sqrt{12}\right):\sqrt{3}\)
\(=\left(2\sqrt{3}-5\sqrt{3}.\sqrt{3^2}+2\sqrt{2^2}.\sqrt{3}\right):\sqrt{3}\)
\(=\left(2\sqrt{3}-15\sqrt{3}+8\sqrt{3}\right):\sqrt{3}\)
\(=-5\sqrt{3}.\dfrac{1}{\sqrt{3}}\)
\(=-5\)
\(K=\sqrt{125}-4\sqrt{45}+3\sqrt{20}-\sqrt{80}\)
\(=\sqrt{5^2.5}-4\sqrt{3^2.5}+3\sqrt{2^2.5}-\sqrt{4^2.5}\)
\(=5\sqrt{5}-12\sqrt{5}+6\sqrt{5}-4\sqrt{5}\)
\(=\sqrt{5}.\left(5-12+6-4\right)\)
\(=-5\sqrt{5}\)
\(L=2\sqrt{9}+\sqrt{25}-5\sqrt{4}\)
\(=2\sqrt{3^2}+\sqrt{5^2}-5\sqrt{2^2}\)
\(=2.3+5-5.2\)
\(=1\)
\(N=2\sqrt{32}-5\sqrt{27}-4\sqrt{8}+3\sqrt{75}\)
\(=2.4\sqrt{2}-5.3\sqrt{3}-4.2\sqrt{2}+3.5\sqrt{3}\)
\(=8\sqrt{2}-8\sqrt{2}-15\sqrt{3}+15\sqrt{3}\)
\(=0\)
\(O=2\sqrt{3.5^2}-3\sqrt{3.2^2}+\sqrt{3.3^2}\)
\(=2.5\sqrt{3}-3.2\sqrt{3}+3\sqrt{3}\)
\(=10\sqrt{3}-6\sqrt{3}+3\sqrt{3}\)
\(=7\sqrt{3}\)
\(L=\dfrac{2\sqrt{3}-15\sqrt{3}+8\sqrt{3}}{\sqrt{3}}=2-15+8=-5\)
\(K=5\sqrt{5}-12\sqrt{5}+6\sqrt{5}-4\sqrt{5}=-5\sqrt{5}\)
L=2*3+5-5*2=5-4=1
N=8căn 2-8căn2-15căn3+15căn 3=0
O=10căn 3-6căn3+3căn3=7căn 3
rút gọn
a)\(\sqrt{20}\)+\(\sqrt{80}\)-\(\sqrt{45}\)
b)4.\(\sqrt{\dfrac{2}{9}}\)+\(\sqrt{2}\)+\(\sqrt{\dfrac{1}{18}}\)
c)\(\dfrac{1}{\sqrt{3}-1}\)-\(\dfrac{1}{\sqrt{3}+1}\)
d)\(\dfrac{1}{\sqrt{x}-1}\)-\(\dfrac{1}{\sqrt{x}+1}\)+1
e)\(\sqrt{x}\)-2+\(\dfrac{10-x}{\sqrt{x}+2}\)
g)\(\dfrac{1}{\sqrt{x}+2}\)-\(\dfrac{2}{\sqrt{x}-2}\)-\(\dfrac{\sqrt{x}}{4-x}\)
Rút gọn các biểu thức sau:
\(a,\left(\sqrt{45}+\sqrt{20}-\sqrt{80}\right):\sqrt{5}\)
\(b,\left(\sqrt{5}-\sqrt{3}\right)^2+2\sqrt{15}\)