Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tấn Đạt
Xem chi tiết
Minh tú Trần
Xem chi tiết
Nguyễn Huy Tú
26 tháng 2 2022 lúc 22:21

a, bạn tự vẽ nhé 

b, Gọi ptđt (D1) có dạng y = ax + b 

(D1) // (D) \(\hept{\begin{cases}a=\frac{1}{2}\\b\ne2\end{cases}}\)

=> (D1) : y = x/2 + b 

Hoành độ giao điểm tm pt 

\(\frac{x^2}{4}=\frac{x}{2}+b\Leftrightarrow x^2=2x+4b\Leftrightarrow x^2-2x-4b=0\)

\(\Delta'=1-\left(-4b\right)=1+4b\)

Để (D1) tiếp xúc (P) hay pt có nghiệm kép 

\(1+4b=0\Leftrightarrow b=-\frac{1}{4}\)

suy ra \(\left(D1\right):y=\frac{x}{2}-\frac{1}{4}\)

toạ độ M là tương giao của cái nào bạn ? 

Khách vãng lai đã xóa
Nguyễn Ngọc Ý
19 tháng 3 2022 lúc 18:38

undefined

Ngọc Dao
Xem chi tiết
Ngọc Dao
Xem chi tiết
Nguyễn Thái Thịnh
31 tháng 1 2022 lúc 17:01

Gọi \(I\) là tâm nằm trên đường trung trực \(OA\)

 \(\Rightarrow IA=d\left(I,d\right)\Leftrightarrow\sqrt{\left(x_0+1\right)^2+x^2_0}=\dfrac{\left|-x_0+x_0+1-1\right|}{\sqrt{2}}\Leftrightarrow\left[{}\begin{matrix}x_0=0\\x_0=-1\end{matrix}\right.\)

Khi đó: \(\left\{{}\begin{matrix}x_0=0\Rightarrow r=1\\x_0=-1\Rightarrow r=1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x^2+\left(y-1\right)^2=1\\\left(x+1\right)^2+y^2=1\end{matrix}\right.\)

 

Nữ hoàng sến súa là ta
Xem chi tiết
Bich Le
Xem chi tiết
Bich Le
12 tháng 6 2017 lúc 12:45

Bài 1:đường thẳng (d) là y= ax+b 

NHA MỌI NGƯỜI :>>

Bich Le
12 tháng 6 2017 lúc 12:46

Bài 1: đường thẳng (d) là y=ax+b

NHA MỌI NGƯỜI :>>

Rau
12 tháng 6 2017 lúc 14:01

Học tốt phương trình bậc 2 - hệ thức viete bạn sẽ lm đ.c :)

Nguyễn Việt Nam
Xem chi tiết
Big City Boy
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 1 2022 lúc 17:54

Phương trình hoành độ giao điểm là:

\(-\dfrac{1}{4}x^2-mx-n=0\)

THeo đề, ta có:

\(\left\{{}\begin{matrix}m+n=2\\\left(-m\right)^2-4\cdot\left(-\dfrac{1}{4}\right)\cdot\left(-n\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=2-n\\m^2-n=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m=2-n\\n^2-4n+4-n=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}n\in\left\{1;4\right\}\\m\in\left\{1;-2\right\}\end{matrix}\right.\)

Bình Trần Thị
Xem chi tiết
Anh Quỳnh
22 tháng 3 2016 lúc 22:02

a) 

Gọi đường tròn cần tìm có dạng (C): \(\left(x-a\right)^2+\left(y-b\right)^2=R^2\)

với tâm I(a;b) bán kính R

\(d\left(I,Ox\right)=\frac{\left|b\right|}{\sqrt{0^2+1^2}}=\left|b\right|\)

\(d\left(I,Oy\right)=\frac{\left|a\right|}{\sqrt{1^2}}=\left|a\right|\)

Do (C) tiếp xúc với Ox , Oy

\(\Rightarrow\left|a\right|=\left|b\right|=R\\ \Rightarrow a=\pm b\)

Lại có : (C) đi qua điểm có tọa độ (2;1) 

\(\Rightarrow\left(2-a\right)^2+\left(1-b\right)^2=b^2\left(vìb^2=R^2\right)\\ \Rightarrow a^2-4a+4+b^2-2b+1=b^2\\ \Leftrightarrow a^2-4a-2b+5=0\left(1\right)\)

TH1: a = b thay vào (1) ta được : 

\(\Rightarrow a^2-4a-2a+5=0\\ \Leftrightarrow a^2-6a+5=0\\ \Leftrightarrow a=1hoặca=5\)

với a =1 \(\Rightarrow\) b =1

\(\Rightarrow\left(C\right):\left(x-1\right)^2+\left(y-1\right)^2=1\)

với \(a=5\Rightarrow b=5\\ \Rightarrow\left(C\right):\left(x-5\right)^2+\left(y-5\right)^2=25\)

TH2 : a = -b thay vào (1) ta được :

\(a^2-4a+2b+5=0\\ \Leftrightarrow a^2-2a+5=0\left(VôNgiệm\right)\)

Vậy có 2 đường tròn (C) cần tìm ở trên

b)

Gọi đường tròn cần tìm có dạng (C): \(\left(x-a\right)^2+\left(y-b\right)^2=R^2\) với tâm I (a;b), bán kính R

Do (C) đi qua 2 điểm (1;1) , (1;4) nên ta có :

\(\begin{cases}\left(1-a\right)^2+\left(1-b\right)^2=R^2\left(1\right)\\\left(1-a\right)^2+\left(4-b\right)^2=R^2\end{cases}\) 

\(\Rightarrow\left(1-b\right)^2=\left(4-b\right)^2\\ \Rightarrow b=\frac{5}{2}\)

Lại có : (C) tiếp xúc với Ox 

\(d\left(I,Ox\right)=\left|b\right|=R\\ \Rightarrow R=\frac{5}{2}\) 

Thay \(b=R=\frac{5}{2}\) vào (1)ta được :

\(\left(1-a\right)^2+\left(1-\frac{5}{2}\right)^2=\frac{25}{4}\\ \Leftrightarrow a^2-2a-3=0\\ \Leftrightarrow a=-1hoặca=3\)

với \(\begin{cases}a=-1\\b=R=\frac{5}{2}\end{cases}\) \(\Rightarrow\left(C\right):\left(x+1\right)^2+\left(y-\frac{5}{2}\right)^2=\frac{25}{4}\)

với \(\begin{cases}a=3\\b=R=\frac{5}{2}\end{cases}\) \(\Rightarrow\left(C\right):\left(x-3\right)^2+\left(y-\frac{5}{2}\right)^2=\frac{25}{4}\)