tìm các số nguyên x, y biết x-y=4 và xy+z2+4=0
1) TÌM CÁC CẶP SỐ NGUYÊN X VÀ Y BIẾT :
a) ( x + 1 )(y - 2)=0
b)(x+3)(y-6)= -4
c) xy + 5x =4
a, => x+1=0 hoặc y-2=0
=> x=-1 hoặc y=2
Tk mk nha
tìm các số nguyên x và y biết:
a) (x + 1).(y _3)= -13
b) (x-7) . (y + 5) = 0
c) xy - 7x + y = -4
b) (x-7).(y+5)=0
=> x-7=0 hoặc y+5=0
Với :x-7=0 =>x=0+7 =>x=7Với :y+5=0 =>y=0-5 =>y=-5a) tìm các số nguyên x y biết
(x-3)(xy-1)=7
b)tìm các số nguyên x y biết
y<0 và (x-3)×y=5
c)Tìm các Ư của A biết
A=1-4+5-8+9-12+...+27-30
d) tìm số nguyên x biết
(X-10)+(x-9)+(x-8)+...+(x-1)=-2015
Tìm các cặp số nguyên x, y biết
a, x. ( y - 3) = - 4
b, xy - 3x - y = 0
c, xy + 2x + 2y = -16
a,Tìm x thuộc z/|x|<18
b,Tìm xy thuộc z/|x-3|+|y-5|=0
c,Tìm các cặp số nguyên (xy)/|x|+|y|=4
d,Tìm các cặp số nguyên (xy)/|x|+|y|<hoặc=3
Tìm các cặp số nguyên x,y biết:
xy + 2y - 3x - 4 = 0
Ta có
\(xy+2y-3x-4=0\)
\(\Leftrightarrow y\left(x+2\right)-3x-4=0\)
\(\Leftrightarrow y\left(x+2\right)-\left(3x-6\right)=2\)
\(\Leftrightarrow y\left(x+2\right)-3\left(x+2\right)=2\)
\(\Leftrightarrow\left(x+2\right)\left(y+3\right)=2\)
(+) với \(\begin{cases}x+2=1\\y+3=2\end{cases}\)\(\Rightarrow\begin{cases}x=1\\y=-1\end{cases}\)
(+) với \(\begin{cases}x+2=-1\\y+3=-2\end{cases}\)\(\Rightarrow\begin{cases}x=-3\\y=-5\end{cases}\)
(+) với \(\begin{cases}x+2=2\\y+3=1\end{cases}\)\(\Rightarrow\begin{cases}x=0\\y=-2\end{cases}\)
(+) với \(\begin{cases}x+2=-2\\y+3=-1\end{cases}\)\(\Rightarrow\begin{cases}x=-4\\y=-4\end{cases}\)Vậy \(\left(x;y\right)\in\left\{\left(1;-1\right);\left(-3;-5\right);\left(0;-2\right);\left(-4;-4\right)\right\}\)\(xy+2y-3x-4=0\)
\(\Leftrightarrow y\left(x+2\right)-3\left(x+2\right)=-2\)
\(\Leftrightarrow\left(x+2\right)\left(3-y\right)=2\)
Tới đây phân tích 2 = 1.2 = ...
Ghép cặp và tính.
Tìm các số nguyên x,y thỏa mãn:6xy+4x-9y-7=0
Tìm giá trị nhỏ nhất của A=x^3+y^3+xy với x,y dương thỏa mãn x+y=1
Tìm các số nguyên x,y thỏa mãn 2x^2+1/x^2+y^2/4=4 sao cho xy đạt giá trị lớn nhất
HELP !
a) \(6xy+4x-9y-7=0\)
\(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)
\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)
\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)
Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)
Tự làm típ
\(A=x^3+y^3+xy\)
\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)
\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))
\(A=x^2+y^2\)
Áp dụng bất đẳng thức Bunhiakovxky ta có :
\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)
\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)
Hay \(x^3+y^3+xy\ge\frac{1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)
Bài 4. Tìm các số nguyên x và y thỏa mãn (x+1).( y-2) =5 Bài 5. Tìm các số nguyên x và y thỏa mãn xy -2x + 3y
4:
(x+1)(y-2)=5
=>\(\left(x+1;y-2\right)\in\left\{\left(1;5\right);\left(5;1\right);\left(-1;-5\right);\left(-5;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(0;7\right);\left(4;3\right);\left(-2;-3\right);\left(-6;1\right)\right\}\)
Tìm các số nguyên x,y biết:
a) (x + 4) . (y - 1) = 13
b) xy - 3x + y = 20
a) \(\left(x+4\right).\left(y-1\right)=13\)
\(x+4=13\) hoặc \(y-1=13\)
\(x=13-4\) hoặc \(y=13+1\)
Vậy \(x=9;y=14\)
b) \(xy-3x+y=20\)
\(x\left(y-3\right)+y+3=20+3\)
\(x\left(y-3\right)+\left(y-3\right)=23\)
\(\left(y-3\right).\left(x+1\right)=23\)
\(y-3=23\) hoặc \(x+1=23\)
\(y=23+3\) hoặc \(x=23-1\)
Vậy \(y=26;x=22\)
tick cho mink nhé ✔
a) (x+4) . (y-1) = 13
Ta có: (x+4); (y-1) thuộc Ư(13)
=> (x+4); (y-1) thuộc { +/- 1; +/- 13 } ( +/- số âm và dương )
(+)Th1: x+4= 1 y - 1 = 13
x = -3 y = 14
(+)Th2: x + 4 = 13 y - 1 = 1
x = 9 y = 2
(+)Th3: x+4= -1 y - 1 = -13
x = -5 y = -12
(+)Th4: x + 4 = -13 y - 1 = -1
x = -17 y = 0
Vậy ...