Biết a-b=1 và a.b=2. Tính M=(a+b)^2
1. Tính tổng hiệu các đa thức sau: M và N, biết:
M=\(2.a^2-3.a.b-b^2+\left(-3.a^2+2.a.b-b^2\right)\)
N=\(a^2-2.a.b+3.b^2\)
Bài 1.
a, Cho\(\dfrac{a}{3}\)=\(\dfrac{b}{4}\)=\(\dfrac{c}{5}\) và a+b+c=24. Tính M = a.b + b.c + ca
b, Cho\(\dfrac{a}{2}\)=\(\dfrac{b}{3}\)= \(\dfrac{c}{4}\)=\(\dfrac{d}{5}\) và a+b+c+d = -42. Tính N = a.b +c.d
Bài 2.
a, Biết\(\dfrac{x}{2}\)=\(\dfrac{y}{3}\)=\(\dfrac{z}{4}\) và x+y+z= 24. Tính A = 3x + 2y - 6z
b, Biết\(\dfrac{x}{5}\)=\(\dfrac{y}{6}\)=\(\dfrac{z}{7}\) và x-y+z = 6\(\sqrt{2}\). Tính B = xy - yz
2:
a: Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+y+z}{2+3+4}=\dfrac{24}{9}=\dfrac{8}{3}\)
=>x=16/3; y=8; z=32/3
A=3x+2y-6z
=3*16/3+2*8-6*32/3
=16+16-64
=-32
b: Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{5}=\dfrac{y}{6}=\dfrac{z}{7}=\dfrac{x-y+z}{5-6+7}=\dfrac{6\sqrt{2}}{6}=\sqrt{2}\)
=>x=5căn 2; y=6căn 2; y=7căn 2
B=xy-yz
=y(x-z)
=6căn 2(5căn 2-7căn 2)
=-6căn 2*2căn 2
=-24
bài 1 a)áp dụng dãy tỉ số bằng nhau ta có:\(\dfrac{a+b+c}{3+4+5}\)=\(\dfrac{24}{12}\)=2
a=2.3=6 ; b=2.4=8 ;c=2.5=10
M=ab+bc+ac=6.8+8.10+6.10=48+80+60=188
"nhưng bài còn lại làm tương tự"
Chứng minh rằng:
(a + b)2 = (a – b)2 + 4ab
(a – b)2 = (a + b)2 – 4ab
Áp dụng:
a) Tính (a – b)2, biết a + b = 7 và a.b = 12.
b) Tính (a + b)2, biết a – b = 20 và a.b = 3.
+ Chứng minh (a + b)2 = (a – b)2 + 4ab
Ta có:
VP = (a – b)2 + 4ab = a2 – 2ab + b2 + 4ab
= a2 + (4ab – 2ab) + b2
= a2 + 2ab + b2
= (a + b)2 = VT (đpcm)
+ Chứng minh (a – b)2 = (a + b)2 – 4ab
Ta có:
VP = (a + b)2 – 4ab = a2 + 2ab + b2 – 4ab
= a2 + (2ab – 4ab) + b2
= a2 – 2ab + b2
= (a – b)2 = VT (đpcm)
+ Áp dụng, tính:
a) (a – b)2 = (a + b)2 – 4ab = 72 – 4.12 = 49 – 48 = 1
b) (a + b)2 = (a – b)2 + 4ab = 202 + 4.3 = 400 + 12 = 412.
a) Biết a-b=6 và a.b=16. Tính a+b.
b) Biết a-b=5 và a.b=2. Tính a-b.
a) Ta có: a-b=6 => a=b+6
=>a.b = (b+6).b = 16
<=>b2+6b=16
<=>b2+6b-16=0
<=>(b-2).(b+8)=0
<=>\(\left[\begin{array}{nghiempt}b=2\\b=-8\end{array}\right.\)
=>\(\left[\begin{array}{nghiempt}a=8\\a=-2\end{array}\right.\)
=>\(\left[\begin{array}{nghiempt}a+b=10\\a+b=-10\end{array}\right.\)
Bạn xem lại đề bài phần b nhé.
a) Ta có : \(\left(a-b\right)^2=a^2-2ab+b^2=36\Rightarrow a^2+b^2=36+2ab=36+2.16=68\)
Lại có : \(\left(a+b\right)^2=a^2+2ab+b^2=68+2.16=100\Rightarrow a+b=\pm10\)
b) tương tự
cho a và b làm số . biết a+b=2 và a.b=-1
Háy tính : a2+b2
Lâu lâu lạc chôi qa đây xíu =))
\(\hept{\begin{cases}a+b=2\\a\cdot b=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}a=2-b\\b\cdot\left(2-b\right)=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}a=2-b\\2b-b^2=-1\end{cases}}\)
Solve a và b, lưu nghiệm vào và thực hiện \(a^2+b^2=6\)
Tính M ; biết a+b =1 , a.b=2 ; M= a3+a2+a+b3+b2+b
M=(a^3+b^3)+(a^2+b^2)+(a+b)=(a+b).(a^2-ab+b^2)+(a^2+b^2)+1=2.(a^2+2ab+b^2)-4ab-2+1=2.(a+b)^2 -4.2-2+1=2.1-8-2+1=-7
Cho hai đơn thức: A=( -1/2 axy^3 )^2 và B=(-3a^2x^2)^3 (a là hằng số khác 0)
a) Tính M = A.B rồi cho biết hệ số và phần biến của M
b) Tìm bậc của M
a: M=A*B=1/4*a^2*x^2y^6*(-27)a^6x^6
=-27/4a^8*x^8*y^6
Hệ số là -27/4a^8
Biến là x^8;y^6
b: bậc là 14
Tính a²+b² biết : a) a+b=3 và a.b=-10 b) a-b=2 và a.b=24
Giúp mình nha, mai phải nộp rồi 😊😊
\(a,a^2+b^2=\left(a+b\right)^2-2ab=3^2-2\left(-10\right)=29\\ b,a^2+b^2=\left(a-b\right)^2+2ab=2^2+2\cdot24=52\)
Chứng minh rằng :
( a + b )2=(a - b )2 + 4ab
( a - b )2=( a + b )2 - 4ab
Áp dụng
a) Tính ( a - b )2,biết a + b=7 và a.b=12
b) Tính ( a + b)2,biết a - b =20 và a.b=3