Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Scarlett
Xem chi tiết
lê thanh thưởng
Xem chi tiết
Nguyễn Minh Đức
Xem chi tiết
giang nguyen
Xem chi tiết
Nguyễn Minh Đức
Xem chi tiết
Nguyễn Việt Lâm
25 tháng 2 2020 lúc 17:03

Đáp án A

Đó là nguyên lý của giới hạn kẹp

\(\left|f\left(x\right)\right|\le\left|x\right|\Rightarrow\lim\limits_{x\rightarrow0}f\left(x\right)=\lim\limits_{x\rightarrow0}x=0\)

Khách vãng lai đã xóa
camcon
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 12 2023 lúc 13:42

\(\lim\limits_{x\rightarrow0}\left(\dfrac{1}{x}-\dfrac{1}{x^2}\right)\)

\(=\lim\limits_{x\rightarrow0}\dfrac{x-1}{x^2}\)

\(=-\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow0}x-1=0-1=-1< 0\\\lim\limits_{x\rightarrow0}x^2=0^2=0\end{matrix}\right.\)

Cris devil gamer
Xem chi tiết
Capheny Bản Quyền
24 tháng 5 2021 lúc 20:33

\(lim_{x\rightarrow0+}\frac{\left(1+x\right)^n-1}{x}\)   

\(=lim_{x\rightarrow0+}\frac{\left(1+x\right)^n-1^n}{x}\)   

\(=lim_{x\rightarrow0+}\frac{\left(1+x-1\right)\left[\left(1+x\right)^{n-1}+\left(1+x\right)^{n-2}+...+\left(1+x\right)^0\right]}{x}\)   

\(=lim_{x\rightarrow0}\left[\left(1+x\right)^{n-1}+\left(1+x\right)^{n-2}+...\left(1+x\right)^0\right]\)    

\(=1^{n-1}+1^{n-2}+...+1^0\) 

Số số hạng 

\(\left(n-1-0\right):1+1=n\)   

Do mọi số hạng đều bằng 1 nên tổng là 

\(1\cdot n=n\)

Khách vãng lai đã xóa
Nguyễn Minh Đức
Xem chi tiết
Nguyễn Việt Lâm
24 tháng 2 2020 lúc 9:44

\(\left|cos\frac{1}{x}\right|\le1\Rightarrow\left|x.cos\frac{1}{x}\right|\le\left|x\right|\)

\(\lim\limits_{x\rightarrow0}\left|x\right|=0\Rightarrow\lim\limits_{x\rightarrow0}x.cos\frac{1}{x}=0\)

Khách vãng lai đã xóa
Nguyễn Minh Đức
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 2 2020 lúc 11:45

Bài này nếu ko sử dụng L'Hopital chắc ko biết đến bao giờ mới xong, bạn tham khảo nếu chưa học quy tắc này:

\(=\lim\limits_{x\rightarrow0}\frac{\frac{2}{cos^22x}-2cos2x}{3x^2}=\lim\limits_{x\rightarrow0}\frac{\frac{8sin2x}{cos^32x}+4sin2x}{6x}=\lim\limits_{x\rightarrow0}\frac{sin2x}{2x}\left(\frac{\frac{8}{cos^32x}+4}{3}\right)=\frac{12}{3}=4\)

Khách vãng lai đã xóa