Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
đào bảo ngọc
Xem chi tiết
Phúc Đức
11 tháng 5 2022 lúc 19:59

banhoeohoyeugianroi

Anhthai Nguyen
Xem chi tiết
Thanh Tùng DZ
20 tháng 5 2017 lúc 20:14

Q = \(\frac{1}{49}+\frac{2}{48}+\frac{3}{47}+...+\frac{48}{2}+\frac{49}{1}\)

Cộng 1 vào mỗi phân số trong 48 phân số đầu, trừ phân số cuối đi 48, ta được :

Q = \(\left(\frac{1}{49}+1\right)+\left(\frac{2}{48}+1\right)+\left(\frac{3}{47}+1\right)+...+\left(\frac{48}{2}+1\right)+1\)

Q = \(\frac{50}{49}+\frac{50}{48}+\frac{50}{47}+...+\frac{50}{2}+1\)

Q = \(\frac{50}{49}+\frac{50}{48}+\frac{50}{47}+...+\frac{50}{2}+\frac{50}{50}\)

đưa phân số cuối lên đầu :

Q = \(\frac{50}{50}+\frac{50}{49}+\frac{50}{48}+\frac{50}{47}+...+\frac{50}{2}\)

Q = \(50.\left(\frac{1}{50}+\frac{1}{49}+\frac{1}{48}+\frac{1}{47}+...+\frac{1}{2}\right)\)

Q = 50 . A

Vậy \(\frac{P}{Q}=\frac{1}{50}\)

nguyễn phạm hà anh
Xem chi tiết
Bảo Bình Vô Đối Hơn Song...
Xem chi tiết
Trần Phương Thảo
Xem chi tiết
Phúc Đức
11 tháng 5 2022 lúc 19:46

​cho P=1/2+1/3+1/4+...........+1/48+1/49+1/50 và Q=1/49+2/48+3/47+........+47/3+48/2+49/1bucminh

nguyen trong hieu
Xem chi tiết
Snow Princess
Xem chi tiết
 Mashiro Shiina
16 tháng 3 2018 lúc 20:04

\(P=\dfrac{1}{49}+\dfrac{2}{48}+\dfrac{3}{47}+...+\dfrac{48}{2}+\dfrac{49}{1}\)

\(P=\left(\dfrac{1}{49}+1\right)+\left(\dfrac{2}{48}+1\right)+\left(\dfrac{3}{47}+1\right)+...+\left(\dfrac{48}{2}+1\right)+1\)

\(P=\dfrac{50}{49}+\dfrac{50}{48}+\dfrac{50}{47}+...+\dfrac{50}{2}+\dfrac{50}{50}\)

\(P=50\left(\dfrac{1}{2}+...+\dfrac{1}{49}+\dfrac{1}{50}\right)\)

\(\dfrac{S}{P}=\dfrac{\dfrac{1}{2}+...+\dfrac{1}{49}+\dfrac{1}{50}}{50\left(\dfrac{1}{2}+...+\dfrac{1}{49}+\dfrac{1}{50}\right)}=\dfrac{1}{50}\)

Vampire Princess
Xem chi tiết
NGuyễn Ngọc Hạ Vy
16 tháng 3 2018 lúc 20:13

p=\(\frac{1}{49}+\frac{2}{48}+\frac{3}{47}+...+\frac{48}{2}+49\)

=\(\left(\frac{1}{49}+1\right)+\left(\frac{2}{48}+1\right)+\left(1+\frac{3}{47}\right)+...+\left(1+\frac{48}{2}\right)+\frac{50}{50}\)

=\(\frac{50}{50}+\frac{50}{49}+\frac{50}{48}+...+\frac{50}{2}\)

=\(50\left(\frac{1}{50}+\frac{1}{49}+\frac{1}{48}+...+\frac{1}{2}\right)\)

p=50*S

\(\frac{S}{\text{p}}=\frac{1}{50}\)

Nguyễn xuân thảo
20 tháng 4 2018 lúc 20:28

s=1,p=50

đào ngọc thảo
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 8 2023 lúc 5:24

a: \(A=\left(\dfrac{1}{99}+1\right)+\left(\dfrac{2}{98}+1\right)+...+\left(\dfrac{98}{2}+1\right)+1\)

\(=\dfrac{100}{99}+\dfrac{100}{98}+...+\dfrac{100}{2}+\dfrac{100}{100}\)

\(=100\cdot\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}\right)\)=100B

=>B/A=1/100

b: \(A=\left(\dfrac{1}{49}+1\right)+\left(\dfrac{2}{48}+1\right)+\left(\dfrac{3}{47}+1\right)+...+\left(\dfrac{48}{2}+1\right)+\left(1\right)\)

\(=\dfrac{50}{49}+\dfrac{50}{48}+....+\dfrac{50}{2}+\dfrac{50}{50}\)

\(=50\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}\right)\)

\(B=\dfrac{2}{2}+\dfrac{2}{3}+\dfrac{2}{4}+...+\dfrac{2}{49}+\dfrac{2}{50}\)

\(=2\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{49}+\dfrac{1}{50}\right)\)

=>A/B=25