nếu A=1^3+2^3+...+100^3 và B=2^3+4^3+...+200^3thì A/B=
Nếu A=13+23+...+1003 và B=23+43+...+2003 thì B/A=
A=1^3+2^3+..+100^3
B=2.(1^3+2^3+.........+100^3)
B/A=2 nhé Mình cũng ko chắc nữa!!!!!
B=23+43+....+2003
B=(1.2)3+(2.2)3+.....+(2.100)3
B=13.23+23.23+....+23.1003
B=23.(13+23+.....+1003)=8.A
=>B/A=8A/8=8
B=23+43+...+2003
B=(1.2)3+(2.2)3+...+(2.100)3
B=13.23+23.23+...+23.1003
=>B=23.(13+23+...+1003)
mà A=(13+23+...+1003)
=>B=8
=>B=8A
=>B:A=8
=>B/A=8
Nếu A=13+23+33+......+1003 và B=23+43+63+.....2003 thì B/A=
ta có:
A= (13+23+33+...+1003)
B= 2(13+23+33+...+1003)
Vậy B/A = 2(13+23+33+...+1003) / (13+23+33+...+1003) = 2
8 ms đúng. Lấy 23:13=8 là ra (mẹo đấy bạn). Mk thi huyện vòng 15 gặp câu này ở Đỉnh núi trí tuệ mà. Kết quả chuẩn luôn
Bạn chỉ cần lấy số đầu tiên là đc 2^3/1^3 =2
Nếu A=13+23+33+...+1003 và B=23+43+63+...+2003 thì \(\frac{B}{A}\)=
B=23+43+63+....+2003
B=(1.2)3+(2.2)3+(2.3)3+....+(2.100)3
B=13.23+23.23+23.33+....+23.1003
B=23.(13+23+33+....+1003)
\(\Rightarrow\frac{B}{A}=\frac{2^3.\left(1^3+2^3+3^3+....+100^3\right)}{1^3+2^3+3^3+...+100^3}=2^3=8\)
Miu Ti làm vớ vẩn
A=.......ghi lại cái đề
B=..............ghi lại cái đề=2.A
=> B/A=2
Theo mình là vậy nhưng ko bít đùng hay ko!
1)Tính nhanh: A=1+3+3^2+3^3+3^4+...+3^100
B= 1+4^2+4^4+4^6+...+4^100
2) Cho biết 1^2+2^3+3^2+4^2+...+10^2= 385
Tính a) S1= 2^2+4^2+...+20^2
. b) S2= 100^2+200^2+...1000^2
Bài 1:
A = 1 + 3 + 32 + ... + 3100
=> 3A = 3 + 32 + ... + 3101
=> 2A = 3101 - 1
=> A = \(\frac{3^{101}-1}{2}\)
B = 1 + 42 + 44 + ... + 4100
=> 8B = 42 + 44 + ... + 4102
=> 7B = 4102 - 1
=> B = \(\frac{4^{102}-1}{7}\)
Bài 2:
a) S1 = 22 + 42 + ... + 202
=> S1 = 22(1+22+...+102)
=> S1 = 22.385
=> S1 = 1540
b) S2 = 1002 + 2002 + ... + 10002
=> S2 = 1002(1+22+...+102)
=> S2 = 1002.385
=> S2 = 3850000
Nếu A = 13+23+33 + ... + 1003 ; B= 23+43+...+2003.
Thì \(\frac{B}{A}\)bằng bao nhiêu?
Bài 1 : Tính :
a , I = 1^2 + 3^2 + 5^2 + ..... + 97^2 + 99^2
b , D = 1^2 - 2^2 + 3^2 - 4^2 + ... + 99^2 - 100^2
Bài 2 : Cho A = 1 + 3 + 3^2 + 3^3 + ....+ 3^20
B = 3^21 : 2
Tính B - A
Bài 3 : Cho A = 1 + 4 + 4^2 + .....+ 4^99
B = 4^100
Chứng minh rằng : A < B/3
Bài 4 : Tính
A = 9 + 99 + 999 + ..... + 999..9 ( số 999..9 có 50 chữ số 9 )
B = 9 + 99 + 999 + ... + 999...9 ( số 999...9 có 200 chữ số 9 )
Bài 5 :
A = 1^2 + 2^2 + .... + 200^2
B = 1^2 + 3^2 + 5^2 + .... + 199^2
C = 2^2 + 4^2 + 6^2 + ....+ 200^2
D = 1^2 - 2^2 + 3^2 - 4^2 +....+ 199^2 - 200^2
E = 1^3 + 2^3 + 3^3 + ... + 50^3
Thu gọn các tổng sau:
a) A = 1 + 3 + 3 mũ 2 + 3 mũ 3 + ... + 3 mũ 100
b) B = 1 + 4 + 4 mũ 2 + 4 mũ 3 + 4 mũ 4 + ... + 4 mũ 100
c) C = 1 + 5 mũ 2 + 5 mũ 3 + 5 mũ 6 + .... + 5 mũ 200
d) D = 3 mũ 100 + 3 mũ 101 + 3 mũ 102 + .... + 3 mũ 150
a) 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (1 + 3 + 3 ^2 + 3 ^ 3 + ... + 3 ^100)
=> 2A = 3^101 - 1 => A = (3^101 - 1)/2
b) 4B = 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101
=> 4B - B = (4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101) - (1 + 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 )
=> 3B = 4^101 - 1 => B = ( 4^101 - 1)/2
c) xem lại đề ý c xem quy luật như thế nào nhé.
d) 3D = 3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151
=> 3D - D = (3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151) - (3 ^100 + 3 ^ 101 + 3 ^ 102 + .... + 3 ^ 150)
=> 2D = 3^ 151 - 3^100 => D = ( 3^ 151 - 3^100)/2
a) Có A=\(1+3+3^2+3^3+....+3^{100}\)
\(\Rightarrow\)3A =\(3\left(1+3+3^2+3^3+...+3^{100}\right)\)=\(3+3^2+3^3+3^4+...+3^{101}\)
\(\Rightarrow2A=3+3^2+3^3+....+3^{101}-1-3-3^2-3^3-....-3^{100}=3^{101}-1\)\(\Rightarrow A=\dfrac{3^{101}-1}{2}\)
Bài b/c/d : bn cứ lm tương tự.
cho A=1/2^2+1/3^2+...+1/100^2 và B=1/4^2+1/6^2+...+1/200^2. Khi đó A/B=
Bài 1:
a) Chứng tỏ rằng : 200 - (3+2/3+2/4+....+2/100)
--------------------------------------- = 2
1/2+2/3+3/4+....+9/100
b) Cho B =5/2.1 + 4/1.11 + 3/11.2 + 1/2.15 + 15/4.43 + 13/43
Chứng tỏ rằng B > 3