Cho tam giác ABC vuông tại A với đường cao AH (H ∈ BC), biết độ dài hai cạnh góc vuông là các nghiệm của phương trình x2 − 2(m+1)x + 2m + 1=0. Tìm giá trị của tham số m để độ dài AH = \(\frac{1}{\sqrt{2}}\)
Tìm các giá trị của m để phương trình x 2 – mx + m 2 – m – 3 = 0 có hai nghiệm x 1 ; x 2 là độ dài các cạnh góc vuông của tam giác ABC tại A biết độ dài cạnh huyền BC = 2
A. m = 2 + 3
B. m = 3
C. m = 1 + 3
D. m = 1 - 3
Cho phương trình x2 - 2(m + 1)x + 2m = 0 (1) (với x là ẩn, m là tham số).
1. Giải phương trình (1) với m = 0.
2. Tìm m để phương trình (1) có hai nghiệm là độ dài hai cạnh góc vuông của một tam giác vuông có cạnh huyền bằng √2.Cho phương trình x2 - 2(m + 1)x + 2m = 0 (1) (với x là ẩn, m là tham số).
1. Giải phương trình (1) với m = 0.
2. Tìm m để phương trình (1) có hai nghiệm là độ dài hai cạnh góc vuông của một tam giác vuông có cạnh huyền bằng √2.
Cho phương trình x2 - 2mx +m2 - 1 = 0 (1), m là tham số. Tìm m để tồn tại một tam giác vuông nhận hai nghiệm x1 ,x2, của phương trình (1) làm độ dài hai cạnh góc vuông của một tam giác vuông có cạnh huyền bằng 10 (đơn vị độ dài)
a: Khi m=3 thì (1): x^2-3x+2*3-4=0
=>x^2-3x+2=0
=>x=1 hoặc x=2
b:
Δ=(-m)^2-4(2m-4)
=m^2-8m+16=(m-4)^2
Để phương trình có hai nghiệm phân biệt thì m-4<>0
=>m<>4
Theo đề, ta có: x1^2+x2^2=13
=>(x1+x2)^2-2x1x2=13
=>m^2-2(2m-4)=13
=>m^2-4m+8-13=0
=>m^2-4m-5=0
=>(m-5)(m+1)=0
=>m=5 hoặc m=-1
Câu 1: Cho tam giác ABC vuông tại A đường cao AH. Biết BH= 4cm, BC = 20cm. Tính Độ dài cạnh AB.
Câu 2: Với giá trị nào của a thì đồ thị hàm số y= ax2 đi qua điểm A (-1; 2)
Câu 3: Tìm Tập hợp các giá trị của tham số m để 3 đường thẳng d1 : y= x+2; d2: y= 2x+1; d3 : y= (m2+1)x + m đồng quy.
Câu 4: Cho 2 đt d1 : y=-4x+3 và d2 : y= m+(m+3)x. Giá trị của tham số m để 2 đt d1 và d2 song song với nhay là
A. -4 B. 0 C. -7 D.3
(mink đag cần gấp)
Bạn nên tách câu hỏi ra thì bọn mình sẽ làm dễ hơn đấy !
Câu 4: Cho 2 đt d1 : y=-4x+3 và d2 : y= m+(m+3)x. Giá trị của tham số m để 2 đt d1 và d2 song song với nhay là
A. -4 B. 0 C. -7 D.3
cho phương trình:x2-(m+2)x+m+1=0(1)
a)Giải pt(1) vs m=-3
b)Chứng tỏ pt(1) luôn có nghiệm vs mọi số thực m
c) Tìm m để pt có 2 nghiệm phân biệt x1;x2 là độ dài hai cạnh góc vuông của một tam giác vuông có độ dài đường cao ứng vs cạnh huyền là h=\(\dfrac{2}{\sqrt{5}}\)
a: Khi m=-3 thì (1): x^2-(-x)-2=0
=>x^2+x-2=0
=>x=-2 hoặc x=1
b: Δ=(m+2)^2-4(m+1)
=m^2+4m+4-4m-4=m^2>=0
=>Phương trình luôn có 2 nghiệm
Câu 1:
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
\(\Leftrightarrow\dfrac{1}{AH^2}=\dfrac{1}{9^2}+\dfrac{1}{12^2}=\dfrac{1}{81}+\dfrac{1}{144}=\dfrac{25}{1296}\)
\(\Leftrightarrow AH^2=\dfrac{1296}{25}\)
hay \(AH=\dfrac{14}{5}=4.8cm\)
Vậy: AH=4,8cm
Câu 2:
Ta có: BC=BH+CH(H nằm giữa B và C)
hay BC=5+6=11(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AB^2=BH\cdot BC\)
\(\Leftrightarrow AB^2=5\cdot11=55\)
hay \(AB=\sqrt{55}cm\)
Vậy: \(AB=\sqrt{55}cm\)
Câu 4:
Không có hàm số nào không phải là hàm số bậc nhất
Bài 1
Cho Phương trình \(x^2-\left(m+5\right)x+3m+6=0\) Tìm m để phương trình có 2 nghiệm phân biệt x1,x2 là độ dài của hai cạnh góc vuông của một tam giác vuông có độ dài cạnh huyền bằng 5.
Bài 2
Cho phương trình x2-2(m-3)x+2(m-1)=0, Tìm m để phuowngt rình có 2 nghiệm phân biệt sao cho biểu thức T=x12 + x22 đạt giá trị nhỏ nhất.
Vì phương trình có 2 nghiệm phân biệt \(x_1,x_2\) nên theo hệ thức VI-ét ta có:
\(\left\{{}\begin{matrix}x_1+x_2=m+5\\x_1x_2=3m+6\end{matrix}\right.\)
Mà \(x_1,x_2\) là độ dài của hai cạnh góc vuông của một tam giác vuông có độ dài cạnh huyền bằng 5 nên ta có:\(\Rightarrow x_1^2+x_2^2=25\Rightarrow\left(x_1+x_2\right)^2-2x_1x_2=25\Rightarrow\left(m+5\right)^2-2\left(3m+6\right)=25\Leftrightarrow m^2+10m+25-6m-12=25\Leftrightarrow m^2+4m-12=0\Leftrightarrow m^2-2m+6m-12=0\Leftrightarrow\left(m-2\right)\left(m+6\right)=0\Leftrightarrow\left[{}\begin{matrix}m=2\\m=-6\end{matrix}\right.\) b Vì phương trình có 2 nghiệm phân biệt \(x_1,x_2\) nên theo hệ thức Vi-ét ta có:
\(\left\{{}\begin{matrix}x_1+x_2=2m-6\\x_1x_2=2m-2\end{matrix}\right.\) \(\Rightarrow T=\left(x_1+x_2\right)^2-2x_1x_2=\left(2m-6\right)^2-2\left(2m-2\right)=4m^2-24m+36-4m+4=4m^2-28m+40=4m^2-28m+49-9=\left(2m-7\right)^2-9\ge-9\) Dấu = xảy ra \(\Leftrightarrow m=\dfrac{7}{2}\)
Cho phương trình x2 - 2(m+1) +2m = 0
1/ Cm pt luôn có hai nghiệm với mọi m
2/ Gọi x1, x2 là hai nghiệm của phương trình. Tìm m để x1, x2 là độ dài hai cạnh góc vuông có cạnh huyền bằng \(\sqrt{12}\)
3/ Tìm giá trị nhoe nhất của A = x12 + x12
GIỜ BÀI NÀY KHÔNG CÒN GIAO LƯU NỮA
(1) (M+1)^2 -2m=m^2 +1 >=0 moi m => (1) được c/m
(2) x1^2 +x^2 =12
=> 4(m+1)^2 -4m =12
m^2+m+1=3 => m=1, -2
=> m
(3) từ (2) GTNN A=3/4 khi x=-1/2
có thể sai đừng tin