Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Mạnh Trung
Xem chi tiết
Nguyễn Tuấn Minh
8 tháng 3 2016 lúc 20:35

15A=\(\frac{15^{2008}-15}{15^{2008}-1}=\frac{15^{2008}-1-14}{15^{2008}-1}=1-\frac{14}{15^{2008}-1}\)

15B=\(\frac{15^{2007}+1+14}{15^{2007+1}}=1+\frac{14}{15^{2007}+1}\)

=> 15A<15B

=> A<B

Ủng hộ mk nha

buddy
Xem chi tiết
Nguyễn Thị Thanh Lộc
Xem chi tiết
Liễu Lê thị
Xem chi tiết
Tư Linh
18 tháng 9 2021 lúc 22:16

em có thể gõ lại công thức đc k

Phan Trần Tường Vy
Xem chi tiết
AVĐ md roblox
29 tháng 12 2022 lúc 17:37

a)A = B

b)A>B

Nguyễn Cảnh Tùng
Xem chi tiết
trần huy đức
Xem chi tiết
Sóii Trắngg
Xem chi tiết
Phong Thần
21 tháng 4 2021 lúc 9:35

Hỏi đáp Toán

Thân Thị Tuyết
Xem chi tiết
Phạm Nguyễn Tất Đạt
16 tháng 5 2016 lúc 17:51

10A=10*\(\frac{10^{2006}+1}{10^{2007}+1}\)                             10B=10*\(\frac{10^{2007}+1}{10^{2008}+1}\)                           

10A=\(\frac{10^{2007}+1+9}{10^{2007}+1}\)                                10B=\(\frac{10^{2008}+1+9}{10^{2008}+1}\)

10A=1+\(\frac{9}{10^{2007}+1}\)                                10B=1+\(\frac{9}{10^{2008}+1}\)

Vì \(\frac{9}{10^{2007}+1}\)>\(\frac{9}{10^{2008}+1}\)=>1+\(\frac{9}{10^{2007}+1}\)>1+\(\frac{9}{10^{2008}+1}\)

Nên 10A>10B=>A>B

Hoàng Mỹ Linh
16 tháng 5 2016 lúc 20:12

Ta có: \(A=\frac{10^{2006}+1}{10^{2007}+1}\)

\(=>10A=\frac{10^{2007}+10}{10^{2007}+1}=\frac{10^{2007}+1+9}{10^{2007}+1}=\frac{10^{2007}+1}{10^{2007}+1}+\frac{9}{10^{2007}+1}=1+\frac{9}{10^{2007}+1}\)

            \(B=\frac{10^{2007}+1}{10^{2008}+1}\)

\(=>10B=\frac{10^{2008}+10}{10^{2008}+1}=\frac{10^{2008}+1+9}{10^{2008}+1}=\frac{10^{2008}+1}{10^{2008}+1}+\frac{9}{10^{2008}+1}=1+\frac{9}{10^{2008}+1}\)

Vì \(10^{2007}+1< 10^{2008}+1=>\frac{9}{10^{2007}+1}>\frac{9}{10^{2008}+1}=>1+\frac{9}{10^{2007}+1}>1+\frac{9}{10^{2008}+1}=>10A>10B=>A>B\)

Đặng Quỳnh Ngân
16 tháng 5 2016 lúc 20:31

Cho B = \(\frac{10^{2007}+1}{10^{2008}+1}\)

Rõ ràng B < 1 nên theo B, nếu \(\frac{a}{b}< 1\) thì \(\frac{a+n}{b+n}>\frac{a}{b}\) => B < \(\frac{\left(10^{2007}+1\right)+9}{\left(10^{2008}+1\right)+9}=\frac{10^{2007}+10}{10^{2008}+10}\)

Do đó B < \(\frac{10^{2007}+10}{10^{2008}+10}=\frac{10\left(10^{2006}+1\right)}{10\left(10^{2007}+1\right)}=\frac{10^{2006}+1}{10^{2007}+1}\)

=> A > B